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A B S T R A C T   

Ischemia-reperfusion (IR) or reoxygenation injury is the paradoxical exacerbation of cellular impairment 
following restoration of blood flow after a period of ischemia during surgical procedures or other conditions. 
Acute interruption of blood supply to the liver and subsequent reperfusion can result in hepatocyte injury, 
apoptosis, and necrosis. Since the liver requires a continuous supply of oxygen for many biochemical reactions, 
any obstruction of blood flow can rapidly lead to hepatic hypoxia, which could quickly progress to absolute 
anoxia. Reoxygenation results in the increased generation of reactive oxygen species and oxidative stress, which 
lead to the enhanced production of proinflammatory cytokines, chemokines, and other signaling molecules. 
Consequent acute inflammatory cascades lead to significant impairment of hepatocytes and nonparenchymal 
cells. Furthermore, the expression of several vascular growth factors results in the heterogeneous closure of 
numerous hepatic sinusoids, which leads to reduced oxygen supply in certain areas of the liver even after 
reperfusion. Therefore, it is vital to identify appropriate therapeutic modalities to mitigate hepatic IR injury and 
subsequent tissue damage. This review covers all the major aspects of cellular and molecular mechanisms un
derlying the pathogenesis of hepatic ischemia-reperfusion injury, with special emphasis on oxidative stress, 
associated inflammation and complications, and prospective therapeutic approaches.   

1. Facts 

• Hepatic ischemia leads to cellular injury to hepatocytes and non
parenchymal cells. 

• Reperfusion or restoration of blood supply during surgical proced
ures exacerbates ischemic tissue injury.  

• Increased generation of reactive oxygen species and subsequent 
oxidative stress are responsible for cellular injury during ischemia 
and reperfusion.  

• Elevated levels of γ-glutamyl transpeptidase activity and increased 
degradation of glutathione contribute to enhanced cellular oxidative 
stress. 

• Expression of vascular growth factors and the resultant heteroge
neous closure of hepatic sinusoids during ischemia exacerbate 
cellular injury and tissue damage.  

• Inhibition of γ-glutamyl transpeptidase activity can decrease 
ischemia and reperfusion tissue damage. 

2. Open questions  

• How to prevent membrane lipid peroxidation and cellular injury 
during ischemia?  

• Whether the use of potent antioxidants could significantly reduce 
ischemia and reperfusion cellular injury? 

• How to store vital organs without tissue damage during trans
plantation procedures? 

3. Introduction 

Ischemia is a condition arising from reduced blood flow to tissues 
that results in decreased oxygen and nutrient supplies essential for 
normal cellular activities [1]. Blood flow can be blocked by thrombosis, 
embolism, or constriction of an artery [2]. Ischemia could also happen 
due to the narrowing or gradual thickening of the artery, as in athero
sclerosis [3]. Furthermore, a trauma could lead to a significant ischemic 
brain injury that can result in cerebral edema [4]. Whatever be the 
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reason, ischemic tissue injury is a major concern that requires firsthand 
medical intervention. Prolonged ischemia may lead to serious problems, 
including myocardial infarction, stroke, and other thrombotic processes, 
and also interfere with organ transplantation. Cellular ischemia follows 
a series of biochemical and morphological changes after about 10 min of 
injury, which may be reversed if blood supply could be rapidly restored 
to the injured cells. 

4. Hepatic ischemia 

A period of ischemia, or insufficient oxygen and blood supply, is 
necessary during many surgical procedures of the liver, especially on 
occasions while dealing with extensive hepatic trauma or trans
plantation [5]. The various other causes of hepatic ischemia are blood 
clots in the hepatic artery after a liver transplant, hepatic vasculitis, heat 
stroke, heart or respiratory failure, and chronic liver diseases. Whatever 
be the cause, hepatic ischemia could lead to injury to hepatocytes that 
results in impaired body metabolism. The liver receives around 25 % of 
the cardiac output, out of that 70 % through the portal vein, and 30 % 
from the hepatic artery [6]. Since the liver requires higher amount of 
oxygen for numerous biochemical reactions and metabolic processes, 
reduced blood supply can lead to immediate hepatic injury [7]. Hepatic 
ischemic injury is marked by a transient elevation of serum trans
aminases due to a decreased oxygen supply, increased oxidative stress, 
and associated cellular injury [6]. Resolution of the ischemia could 
restore the normal levels of serum transaminase within 3–5 days, 
depending on the condition. 

5. Hepatic ischemia-reperfusion injury 

The restoration of normal blood supply or reoxygenation of the tissue 
deprived of oxygen is termed reperfusion. However, this process will 
lead to additional complications as an “insult to injury” and is termed 
ischemia-reperfusion (IR) injury. It is a dynamic process involving two 
interrelated stages of ischemic insult and inflammation-mediated 
reperfusion injury [8]. The hepatic IR injury could also develop after 
organ transplantation, tumor resection or cardiopulmonary resuscita
tion, or as a result of trauma and shock [9]. The IR injury is mainly 
associated with enhanced production of free radicals and subsequent 
oxidative stress [10,11]. The extent of injury depends on how long the 
tissue was deprived of oxygen or blood supply. IR injury could lead to 
disseminated intravascular coagulation [12], hypovolemic shock [13], 
cardiac failure and arrest [14], increased toxicity of alcohol [15], and 
several other pathophysiological complications. Hepatic IR injury is a 
major clinical problem and could lead to multiple complications and 
poor outcome, including mortality after liver transplant surgery [16]. 
Currently, liver transplantation is the only effective approach to treat 
patients with terminal liver disease. However, liver dysfunction and 

failure are potential risks after transplantation and may affect patients’ 
survival and quality of life [17]. Therefore, it is important to investigate 
the molecular mechanisms involved in hepatic IR injury and the 
appropriate therapeutic modalities to arrest or attenuate the IR injury. 
Experimental rodent models of hepatic IR injury have provided signifi
cant information about the cellular and molecular mechanisms of he
patic IR injury and associated events [18,19]. However, the precise 
mechanisms of the pathogenesis of hepatic IR injury, the molecules 
involved, and the process of liver regeneration and repair after IR injury 
are still obscure. In this review, we delineate the underlying molecular 
mechanisms of hepatic IR injury employing existing knowledge and 
information, depict the downstream cascade associated with inflam
mation and complications, and describe the current treatment strategies 
and therapeutic approaches. 

6. Parameters involved in hepatic ischemia-reperfusion injury 

A variety of factors are involved in the development of hepatic IR 
injury, including activation of Kupffer cells, upregulation of pro- 
inflammatory cytokines, intracellular calcium overload, and oxidative 
stress, each contributing to the overall pathophysiology to varying de
grees [20]. The formation of reactive oxygen species (ROS) and subse
quent cellular oxidative stress are the most invoked mechanisms in the 
development of hepatic IR injury. Hepatic ischemia leads to tissue 
hypoxia, which in turn triggers hypoxia-inducible factors (HIFs) that 
regulate the expression of numerous genes involved in cell survival, 
angiogenesis, glycolysis, and cell invasion [21]. The decreased levels of 
oxygen and associated changes in metabolite levels can be sensed by 
several stress pathways that result in the generation of ROS by mito
chondria. Subsequent reperfusion results in the activation of Kupffer 
cells, which in turn generate excessive amount of ROS such as super
oxides, hydrogen peroxide, and hydroxyl radicals that lead to cellular 
impairment and hepatic inflammation [22]. The elevated levels of 
intracellular ROS lead to oxidative stress that causes damage to cellular 
lipids, proteins, and nucleic acids. Oxidative stress leads to enhanced 
peroxidation of membrane lipids that causes structural and functional 
impairment, leading to cell death [23]. Furthermore, pro-inflammatory 
cytokines, chemokines, and other inflammatory mediators produced by 
the damaged cells contribute to the systemic inflammatory syndrome 
and post-ischemic tissue injury [24]. The inflammatory mediators acti
vate and drive neutrophils into the post-ischemic liver, which further 
increases ROS levels and triggers the synthesis of excessive proteases 
such as matrix metalloproteases [25]. Apart from the inflammatory re
sponses, ROS induces the expression of endothelin-1, a potent endoge
nous vasoconstrictor mainly secreted by endothelial cells, which results 
in vasoconstriction of hepatic sinusoids [26,27]. This leads to the het
erogeneous closure of numerous hepatic microvessels that results in 
reduced oxygen supply in certain areas of the liver even after reperfu
sion, leading to further complications [28]. 

7. Molecular mechanisms of ischemia-reperfusion injury 

A schematic diagram of the major molecular mechanisms involved in 
the generation of reactive oxygen species (ROS), oxidative stress, and 
the pathogenesis of liver injury during ischemia and reperfusion is 
presented in Fig. 1. The metabolic processes are mainly happening in 
hepatocytes. In addition, the impairment of first-line antioxidant de
fense mechanisms involving glutathione, glutathione peroxidase, su
peroxide dismutase, and catalase contributes to the pathogenesis of liver 
injury during ischemia and reperfusion [29]. 

7.1. Free radicals, reactive oxygen species, oxidative stress, and lipid 
peroxidation 

The generation of free radicals and ROS is part of the regular 
biochemical and metabolic processes in biological systems, which are 
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instantly removed under normal physiological conditions. Radicals 
(often called free radicals) are produced during a variety of biochemical 
reactions and also in pathogenic defense processes [30]. A free radical is 
an independent molecule with one or more unpaired electrons in its 
outermost atomic orbital. In a quest to fill the partially empty valence 
shell, the highly reactive free radicals “steal” electrons from the atoms of 
other molecules present in the cells and tissues. This electron-stealing 
frenzy produces oxidative damage to cell membranes, proteins, and 
DNA and is an underlying cause for many chronic diseases, including 
cardiovascular disease, diabetes, and cancer [31,32]. Reactive oxygen 
species are a subset of free radicals that contain a highly reactive oxygen 
molecule, such as superoxide (O2•− ). Examples of ROS are peroxides, 
superoxide, hydroxyl radicals, singlet oxygen, and alpha-oxygen [33]. 
At normal physiological levels, ROS serve as key redox signaling agents 
for over 40 enzymes, most prominently NADPH oxidases (NOX) and the 
mitochondrial electron transport chain [34]. There are seven isoforms of 
NOX that have been characterized in humans, which include NOX1, 
NOX2, NOX3, NOX4, NOX5, DUOX1, and DUOX2 [35]. Each NOX iso
form is differentiated by the specific catalytic subunit, interacting 

proteins, and subcellular localization. It was reported that remote 
ischemic preconditioning (IPC) has significantly reduced the IR-induced 
hepatic NOX2 expression, but the expression of NOX4 has been un
changed [36]. 

The term “oxidative stress” refers to elevated intracellular levels of 
ROS, which usually occur when there is an imbalance between the 
generation and removal of oxidative free radicals. Under normal phys
iological conditions, any excess amount of ROS generated during 
biochemical and metabolic processes will be instantly and quickly 
removed by the potent antioxidant system present in the body, and 
maintain a healthy balance between generation and disposal. However, 
during pathological conditions, the balance between ROS generation 
and removal will be impaired, which results in cellular oxidative stress 
that causes damage to cell membranes and macromolecules [37]. The 
term “lipid peroxidation” refers to the chain reactions of oxidative 
damage to membrane lipids during oxidative stress, leading to cell 
injury and ultimate cell death. It occurs when radicals “steal” electrons 
from the lipids of the cell membrane and induce a series of peroxide 
reactions of free fatty acids [38]. Cell membranes are highly sensitive to 

Fig. 1. The γ− glutamyl cycle indicating elevated levels of γ-glutamyl activity and increased degradation of glutathione during hepatic ischemia-reperfusion. 
γ-Glutamyl transpeptidase (γ-GT) is present in the outer surface of the cell membrane and transfers the γ-glutamyl moiety of glutathione into glutamate and 
γ-glutamyl-amino acids with a byproduct cysteinylglycine. The cysteinylglycine is a highly reactive thiol compound and reduces Fe3+ (ferric iron) into Fe2+ (ferrous 
ion) with the donation of an electron. In the subsequent redox reaction, oxygen (O2) takes away an electron from Fe2+ and transform to Fe3+ with the generation of 
superoxide. Molecular oxygen (dioxygen) is a diradical containing two unpaired electrons, and superoxide is generated from the addition of an electron that fills one 
of the two degenerate molecular orbitals, leaving a charged ionic species with a single unpaired electron and a net negative charge of − 1. The repeated redox cycling 
causes elevation of reactive oxygen species (ROS) which in turn results in intracellular oxidative stress. 
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free radicals due to the presence of polyunsaturated fatty acids such as 
linoleic acid and arachidonic acid. Excessive production of ROS, 
decreased antioxidant defense system, increased cellular oxidative 
stress, and numerous downstream events are responsible for extensive 
liver injury and necrosis after ischemia-reperfusion [39]. 

7.2. Glutathione 

Glutathione (GSH) is a tripeptide (Glu-Cys-Gly) composed of three 
amino acids: L-glutamate, L-cysteine, and L-glycine (Fig. 1). Glutamic 
acid is linked to cysteine through the γ-carboxyl group instead of the 
usual α-carboxyl group. Therefore, the bond is protected from common 
peptidases, and only the γ-glutamyl transpeptidase (γ-GT) can break it. 
Glutathione is a potent antioxidant that is involved in multiple cellular 
defense mechanisms, including cytokine production, cell proliferation, 
and immune responses [40]. Glutathione also involves regulation of 
metabolism and gene expression, signal transduction and apoptosis, and 
DNA and protein synthesis. The reduced form of glutathione (GSH) plays 
a pivotal role in removing free radicals from the liver and other vital 
organs. The sulfhydryl group (− SH) of the cysteine present in gluta
thione is involved in reduction and conjugation reactions and is 
responsible for the removal of peroxides and multiple xenobiotic com
pounds [41]. The intracellular concentration of GSH in hepatocytes is up 
to 10-fold higher than extracellular GSH. During ischemia, the intra
cellular GSH will be flushed to extracellular space in order to scavenge 
free radicals, which results in the depletion of intracellular GSH. A sig
nificant decrease in hepatic GSH level was reported during ischemia and 
also at 2 h after reperfusion [42]. We have noticed a marked decrease in 
hepatic GSH content during IR injury in rats [18]. 

7.3. γ-Glutamyl transpeptidase 

Gamma-glutamyl transpeptidase (γ-GT), also named γ-glutamyl 
transferase or γ-glutamyl peptidyltransferase, is a heterodimeric enzyme 
present in most organisms ranging from bacteria to mammals [43]. The 
mammalian γ-GT is present on the outer surface of the plasma mem
brane, anchoring its N-terminal to the membrane, and exhibits secretory 
or absorptive functions (Fig. 1) [44]. The enzyme γ-GT plays a promi
nent role in glutathione metabolism and involves the transfer of amino 
acids across the cell membrane. It catalyzes the transfer of the γ-glu
tamyl group of glutathione and other γ-glutamyl amides to water (hy
drolysis) or amino acids and peptides (transpeptidation) [45]. γ-GT 
plays a pivotal role in antioxidant defense and xenobiotic metabolism 
and is also associated with numerous pathological conditions, including 
cardiovascular diseases, liver disease, and cancer [46,47]. 
Ischemia-reperfusion injury leads to extreme hepatic necrosis that re
sults in leakage of γ-GT into the blood stream and subsequent elevation 
of serum γ-GT levels [48]. Serum γ-GT has been widely used as an index 
of liver dysfunction, fatty liver disease, and a marker of alcohol abuse 
[49]. 

In mammalian cells, glutathione degradation occurs exclusively in 
the extracellular space [50]. The extracellular γ-GT catalyzes the first 
step in GSH degradation and transfers the γ-glutamyl moiety of GSH to 
an amino acid to form γ-glutamylamino acid with a byproduct of cys
teinylglycine [51]. The enzyme γ-glutamyl cyclotransferase cleaves 
γ-glutamylamino acid to an amino acid and 5-oxoproline. The latter 
transforms into L-glutamate and enters the glutathione cycle (Fig. 1). 
Cysteinylglycine is further cleaved by a dipeptidase into cysteine and 
glycine, which are utilized in the biosynthesis of GSH. Cysteinylglycine 
is a highly reactive thiol compound that has very high physiological 
activity. It can reduce oxygen under normal physiological conditions by 
reducing a metal ion or similar compounds [52]. This process is known 
as redox-cycling and produces superoxide, which results in increased 
cellular oxidative stress that subsequently triggers oxidative reactions of 
biomembrane lipids and other macromolecules (Fig. 1) [53]. During IR 
injury, extreme cellular necrosis occurs, which results in the release of 

membrane bound γ-GT into the extracellular space. This leads to 
enhanced degradation of GSH driven by γ-GT, which in turn generates 
increased ROS and oxidative stress. This will further exacerbate the 
situation and induce additional membrane injury and cellular impair
ment. As an “insult to injury,” the restoration of blood supply or 
reperfusion of ischemic tissue leads to increased injury, mainly due to 
enhanced production of free radicals [18]. Glutathione driven oxidative 
damage generated by γ-GT could produce preneoplastic foci in the liver 
and may lead to hepatocarcinogenesis [52]. 

7.4. Mechanism of increased generation of reactive oxygen species and 
development of oxidative stress during ischemia and reperfusion 

The molecular mechanism of increased generation of reactive oxy
gen species and elevation of oxidative stress during IR injury is depicted 
in Fig. 1. There will be increased activity of γ-GT and enhanced degra
dation of GSH during ischemia and reperfusion, which results in 
elevated levels of cysteinylglycine. As discussed above, cysteinylglycine 
is a highly reactive thiol compound that can reduce Fe3+ into Fe2+ with 
the donation of an electron. In the subsequent redox reaction, oxygen 
(O2) takes away an electron from Fe2+ and transforms it to Fe3+ with the 
generation of superoxide.  

Fe2+ + O2 ←→ [Fe2+− O2 ←→ Fe3+− O2•− ] ←→ Fe3+ + O2•− (super
oxide) → cellular injury                                                                       

Molecular oxygen is a diradical that consists of two unpaired elec
trons. Superoxide is generated when an electron is added that fills one of 
the two degenerate molecular orbitals, leaving a charged ionic species 
with a single unpaired electron and a net negative charge of − 1. In the 
reverse reaction, an electron from cysteinylglycine converts Fe3+ back to 
Fe2+ and the process continues. This redox cycling refers to the ability to 
cycle between oxidized and reduced forms, and the process results in the 
production of ROS, such as superoxide. The repeated redox cycling 
causes elevation of free radicals (ROS), which in turn results in intra
cellular oxidative stress (Fig. 1). Under normal conditions, the enzyme 
superoxide dismutase (SOD) quickly catalyzes the dismutation of su
peroxide (O2•− ) along with water (H2O) into ordinary molecular oxy
gen (O2) and hydrogen peroxide (H2O2) [54]. The H2O2 thus formed is 
highly reactive and harmful to cell membranes and other molecules. It is 
quickly degraded by the ubiquitous enzyme catalase into water and 
molecular oxygen (2H2O2 → 2H2O + O2) [55]. However, during 
ischemia and reperfusion, there is increased activity of γ-GT and 
enhanced degradation of glutathione with the net result of elevated 
superoxide levels. On the other hand, there is a decreased activity of the 
free radical scavengers SOD and catalase due to increased cellular 
injury. This will exacerbate membrane lipid peroxidation and also affect 
other vital molecules such as proteins and nucleic acids. Furthermore, 
during reperfusion, multiple free radicals and nitric oxide (NO) are 
formed, which cause additional inflammation, membrane lipid peroxi
dation, and apoptosis that aggravate the situation [56]. 

7.5. Role of mitochondrial ROS in the pathogenesis of ischemia- 
reperfusion injury 

It has been well documented that during ischemia and reperfusion, 
the extensive generation of ROS by mitochondria plays a critical role in 
the impairment of cellular components and triggers cell death [57]. 
Under normal physiological conditions, the electron transport chain of 
mitochondria produces a moderate quantity of ROS, which will be 
removed by the potent antioxidant system, and the balance is main
tained. However, during ischemia, mitochondria generate large 
amounts of ROS to maintain the redox balance, which results in the 
increased utilization of endogenous antioxidants [58]. When the bal
ance between the increased amount of ROS and the antioxidant system 
scavenging system is impaired, ROS accumulates in the mitochondria, 
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leading to oxidative stress, inflammation, cell death, and organ failure 
[59]. The ROS generated inside mitochondria plays a prominent role in 
contributing to IR injury, inducing mitochondrial permeability transi
tion and oxidative damage to mitochondrial structures and molecules 
[60]. The onset of ischemia triggers impairment of electron transport 
and the oxidative phosphorylation system of mitochondria, which leads 
to structural and functional deterioration of the mitochondrial mem
brane. Since mitochondria are the battery of the cell, damage to the 
mitochondrial membrane results in mitochondrial dysfunction and the 
collapse of multiple cellular signaling pathways, leading to necrosis and 
cell death. Overall, the ROS formed within mitochondria play a signif
icant role in the deleterious cascade of events associated with hepatic IR 
injury, which might be a potent therapeutic target to prevent adverse 
events during liver transplant surgery. 

8. Downstream effects of oxidative stress during ischemia and 
reperfusion 

The increased oxidative stress that develops during ischemia and 
reperfusion is the major reason for cellular injury during hepatic surgery 
or transplantation. Hypoxia alters the mitochondrial electron transport 
chain and contributes to the development of enhanced ROS in hepatic 
ischemia [61]. The increased ROS during ischemia and reperfusion may 
lead to a series of processes in the liver leading to hepatic injury, cellular 
necrosis, apoptosis, and cell death. 

8.1. Translocation of nuclear protein HMGB1 

High mobility group box 1 (HMGB1) is a highly conserved nuclear 
protein that is released during cellular injury, translocates to the 
extracellular space, and acts as a chemokine [62]. HMGB1 is involved in 
DNA repair, regulates transcription, promotes the secretion of cytokines, 
and potentially contributes to tissue repair and regeneration [63]. 
HMGB1 is actively secreted from a variety of immune and non-immune 
cells, including hepatocytes, in response to various stimuli, such as 
proinflammatory cytokines [64]. Cellular oxidative stress is one of the 
key factors that induces the secretion of HMGB1 from the nucleus and its 
translocation to the extracellular space to perform important roles in the 
regulation of cellular responses to inflammation and injury [65]. As a 
representative damage-associated molecular pattern (DAMP), HMGB1 
normally presents inside cells but can be secreted into the extracellular 
space through passive or active release [66]. Upon translocation to the 
extracellular space, HMGB1 forms complexes with central mediators of 
inflammation such as TLR4, CXCL12, and RAGE, with subsequent 
recruitment of inflammatory cells and production of cytokines [66]. 
Fig. 2 demonstrates marked staining of HMGB1 in the extracellular 
compartment of the rat liver after IR injury. It was observed that se
lective IR injury induces HMGB1 translocation to the adjacent 
non-ischemic hepatic lobes also [67]. Therefore, targeting HMGB1 with 
suitable antioxidants could be an appropriate therapeutic method for 
inflammation-associated diseases such as ischemia and reperfusion 
injury, arthritis, diabetes, and cancer. 

It was reported that inflammasome-mediated inflammation plays a 
significant role in the pathogenesis of hepatic IR injury [68]. Inflam
masomes are a type of intracellular multimolecular complex that 
actively participates in innate immune responses and proinflammatory 
signaling pathways [69]. Among them, the cytokine-producing nucleo
tide-binding domain leucine-rich repeat and pyrin-containing receptor 3 
(NLRP3) inflammasome play a central role in the immune response to 
various pathogen-derived as well as danger-associated signals [69]. 
NLRP3 pathways can be enhanced under oxidative stress conditions and 
are subject to redox regulation [70]. NLRP3 is highly expressed in liver 
macrophages, and the assembly of the NLRP3 inflammasome could lead 
to hepatic IR injury and thus promise as a therapeutic target. 

8.2. Increased release of tumor necrosis factor 

Tumor necrosis factor (TNF, cachexin, or cachectin; formerly known 
as tumor necrosis factor alpha, or TNF-α) is a potent pro-inflammatory 
cytokine that has a major role in cell signaling and the formation of 
acute phase reactions [71]. It is mainly released by activated macro
phages during infection or inflammation to alert other cells in the im
mune system as part of an inflammatory response. In the liver, TNF 
induces numerous biological and pathological responses such as hepa
tocyte apoptosis and necrosis, liver inflammation and regeneration, 
autoimmunity, and progression to hepatocellular carcinoma [72]. The 
rate of expression of TNF serves as a marker for the degree of hepatic 
inflammation. Fig. 3 demonstrates intense and strong staining of TNF in 
macrophages that infiltrated into the necrotic zone during IR injury in 
rat livers. Cellular oxidative stress is a major factor that triggers in
flammatory signal to macrophages, which in turn releases TNF in several 
hepatic pathological conditions such as ischemia, NASH, and hepatic 
fibrosis [18,73]. Targeting TNF-α and its receptors may be a potent 
therapeutic strategy to arrest excessive inflammatory responses in IR 
injury and several autoimmune diseases. 

Fig. 2. Immunohistochemical staining for high mobility group box 1 (HMGB1) 
(antibody used (GeneTex Cat# GTX127344, RRID:AB_11164700): in rat liver 
with hepatic steatosis. (A) Control liver showing the complete absence of 
HMGB1 staining. (B) Marked and prominent staining of HMGB1 after ischemia- 
reperfusion in the necrotic zone as a response to hepatic inflammation (x200). 
HMGB1 is a nuclear protein that translocates to the cytoplasm and extracellular 
compartments during ischemia-reperfusion injury. Tissue oxidative stress is a 
major factor that induces the secretion of HMGB1 from the nucleus and its 
relocation to the extracellular matrix to perform pivotal roles in the regulation 
of cellular response to inflammation. (Originally published as a Figure panel in Br 
J Pharmacol 2020; 177: 5195–5207 by the authors). 
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8.3. Enhanced rate of membrane lipid peroxidation 

Lipid peroxidation refers to the chain of reactions involved in the 
oxidative degradation of membrane lipids in biological systems. During 
this process, free radicals “steal” electrons from the hydrogen atom of 
lipids present in cell membranes as the first phase. Cell membranes are 
highly sensitive to lipid peroxidation due to the extensive presence of 
polyunsaturated fatty acids that contain multiple double bonds of the 
methylene group (-CH2) with reactive hydrogen atoms [74]. The radical 
formed in the first phase reacts with oxygen and forms a peroxyl radical 
that further reacts with adjacent polyunsaturated fatty acids to form a 
hydroperoxide and an alkyl radical, thus forming a chain of reactions 
that causes damage to the cell membrane. Increased generation of free 
radicals and cellular oxidative stress is an integral part of the patho
genesis of almost all liver diseases, including NASH and hepatic fibrosis 
[75,76]. The elevated levels of γ-GT and increased production of ROS 
during IR injury could result in extensive membrane lipid peroxidation, 
leading to apoptosis or necrosis. Increased oxidative stress and accom
panying lipid peroxidation are major factors involved in aging and 
associated disorders [77]. 

Malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE) are the 
two major end products and tissue markers of lipid peroxidation. 
Malondialdehyde is considered the most mutagenic product of lipid 
peroxidation, while 4-HNE is the most toxic. MDA is a highly reactive 
three-carbon dialdehyde formed as an end product of arachidonic acid 

and large polyunsaturated fatty acid metabolism [78]. The oxidative 
degradation of an arachidonic acid ester molecule and the formation of 
MDA are presented in Fig. 4A. In addition to hydroperoxides, the per
oxidation of arachidonic acid can generate cyclic peroxides such as 
isoprostanoids [79]. On the other hand, they cycle together with the 
addition of a second oxygen molecule. These intermediates generate 
MDA through a retro-Diels–Alder reaction (Fig. 4A). MDA can readily 
bind to several functional groups on proteins and nucleic acids and form 
adducts. MDA adducts can participate in secondary deleterious reactions 
through intermolecular and intramolecular protein/DNA crosslinking 
that may cause profound alteration in the biochemical properties of 
macromolecules. We have reported remarkably increased levels of MDA 
in the hepatic tissue during experimentally induced 
ischemia-reperfusion injury in rat livers [18,39,48]. 

The highly reactive lipid peroxidation end product, 4-HNE is an 
α,β-unsaturated aldehyde formed by the peroxidation of omega-6 un
saturated fatty acids such as linoleic acid [80]. As a highly reactive 
aldehyde, 4-HNE can disrupt signal transduction and protein activity, 
induce inflammation, and trigger cellular apoptosis. It can efficiently 
react with sulfhydryl groups or histidine and lysine groups of proteins to 
form stable HNE-protein adducts, in addition to phospholipids and 
nucleic acids [81]. The oxidative degradation of linoleic acid, depicting 
the production of 4-HNE is presented in Fig. 4B. The formation of 4-HNE 
is a reliable biomarker for the oxidative degradation of membrane lipids 
and is directly correlated with cellular oxidative stress. Increased lipid 
peroxidation and the formation of 4-HNE-protein adducts have been 
reported after ischemia and reperfusion during the transplantation of rat 
hearts [82]. Increased tissue levels of 4-HNE is linked with a large 
number of pathological conditions, including Alzheimer’s disease, dia
betes, cataract, atherosclerosis, fatty liver diseases, fibrogenesis, and 
cancer [83]. 

9. Current therapeutic approaches to arrest ischemia- 
reperfusion injury 

Since the pathophysiology of hepatic IR injury involves multiple 
molecular mechanisms, various types of pharmacological interventions, 
antioxidant therapy, and stem cell therapy have been tested to suppress 
the phenomenon. However, many of these strategies are currently at the 
stage of animal experimental models only. The prospective therapeutic 
approaches to arrest ischemia-reperfusion injury are depicted in Fig. 5. 

9.1. Inhibition of γ-glutamyl transpeptidase 

As described in Fig. 1 and the associated text, there is increased ac
tivity of γ-GT and enhanced degradation of GSH, which lead to elevated 
oxidative stress and lipid peroxidation during hepatic IR injury. There
fore, inhibition of γ-GT is an effective measure to arrest increased pro
duction of ROS, subsequent oxidative stress, and the associated lipid 
peroxidation. We have demonstrated that intravenous injection of 
GGsTop is an effective method to inhibit γ-GT and prevent hepatic IR 
injury in rat models [18,48]. GGsTop (2-amino-4{[3-(carboxymethyl) 
phenyl](methyl) phosphono} butanoic acid) is a novel phosphonate and 
a potent irreversible inhibitor of γ-GT [84]. GGsTop specifically inhibits 
human γ-GT more than 100-fold compared to acivicin and does not 
affect glutamine amidotransferase [85]. GGsTop covalently binds be
tween the side chain oxygen of Thr-381 of human gamma GT1 (hGGT1) 
and the phosphate of GGsTop resulting in an enzyme-inhibitor complex 
[86]. Intravenous administration of GGsTop at a single dose of 30 or 100 
mg/kg body weight in rats did not produce abnormalities in behavior, 
body weight, or amount of food intake for 2 weeks [87]. Besides, 
GGsTop exhibited no cytotoxicity towards human fibroblasts and he
patic stellate cells up to 1 mM concentration in culture [88]. Further
more, it was reported that enhanced γ-GT activity contributes to cardiac 
impairment after myocardial ischemia/reperfusion through oxidative 
stress, and treatment with GGsTop has potential therapeutic 

Fig. 3. Immunohistochemical staining for tumor necrosis factor-α (TNF-α) 
(antibody used: Cat# ab6671, Abcam, Tokyo, Japan) in rat liver sections after 
ischemia-reperfusion injury. (A) Control liver showing complete absence of 
TNF-α staining. (B) Intense and strong staining of TNF-α in macrophages that 
infiltrated into the necrotic zone (x100). TNF-α is a pro-inflammatory cytokine 
produced by activated macrophages during acute inflammation and serves as a 
marker for the degree of hepatic injury during ischemia-reperfusion. (Originally 
published as a Figure panel in Am J Physiol Gastrointest Liver Physiol 2016; 311: 
G305–G312 by the authors). 
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implications to prevent myocardial ischemia/reperfusion injury [89]. 
Therefore, treatment with GGsTop could be an appropriate therapeutic 
method to reduce ischemia/reperfusion-induced liver injury during 
surgical resection and transplantation. 

9.2. Use of other pharmacological agents 

9.2.1. Recombinant thrombomodulin 
Many pharmacological agents have been reported that could alle

viate or arrest hepatic IR injury during resection or transplantation. We 
have observed that intravenous injection of recombinant thrombomo
dulin (rTM) can significantly reduce the expression of TNF-α and the 
formation of 4-HNE during experimentally induced hepatic IR injury 
[39]. Thrombomodulin (TM), or human CD141+ is a 74 kDa glyco
protein that expresses on the surface of endothelial cells and serves as a 
cofactor for thrombin-mediated activation of protein C [90,91]. Re
combinant thrombomodulin is a novel physiologic anticoagulant pro
tein used to treat sepsis-induced disseminated intravascular coagulation 
(DIC). It is composed of the active extracellular domain of thrombo
modulin that could serve the same as thrombomodulin and also be an 
anti-inflammatory agent [92]. As in the case of thrombomodulin, rTM 
accelerates the thrombin-catalyzed conversion of protein C to activated 
protein C that inhibits monocyte and macrophage activation [93]. It was 
reported that rTM could ameliorate autoimmune vasculitis through a 

combination of immune response regulation and tissue injury protection 
[94]. Besides, rTM also exhibits an anti-inflammatory effect through 
binding and inhibiting the proinflammatory mediator, high mobility 
group box 1 (HMGB1) protein, which in turn leads to reduction of TNF-α 
and other inflammatory cytokines [95,96]. It was reported that rTM 
ameliorates hepatic IR injury in a toll-like receptor-4 (TLR-4) pathway 
dependent manner and is suggested as a novel medicine for liver 
transplantation [96]. Therefore, rTM might be a useful agent to suppress 
hepatic inflammation and the associated IR injury during surgical 
procedures. 

9.2.2. Melatonin 
Melatonin is a potent antioxidant and a hormone synthesized in the 

pineal gland at night that controls the sleep-wake cycle in vertebrates 
[97]. Melatonin acts as a direct scavenger of free radicals and ROS, 
including OH•, O2•− , and the reactive nitrogen species NO• [98]. 
Through its receptors, melatonin stimulates various potent antioxidant 
enzymes that include superoxide dismutase, catalase, and glutathione 
peroxidase to attenuate hepatic IR injury [99]. Several studies demon
strated that melatonin attenuates hepatic inflammation and IR injury by 
ensuring the synthesis of ATP in the liver, maintaining the stability of the 
mitochondrial membrane, and improving bile production [100,101]. It 
was shown that melatonin could decrease the activity of the nuclear 
factor kappa B (NF-κB) signaling pathway during hepatic IR injury, 

Fig. 4. Lipid peroxidation of polyunsaturated fatty acids depicting the production of toxic end products malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE). 
The toxic aldehydes MDA and 4-HNE can react with the -NH2 group of proteins and DNA bases to form adducts that can cause mutations. (A) Oxidative degradation 
of arachidonic acid and formation of MDA. (B) Oxidative breakdown of linoleic acid to hydroperoxynonenal and then to hydroxynonenal. 
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ameliorate the inflammatory response, maintain liver function, and in
crease the survival rate [102]. Furthermore, it was reported that mela
tonin protects the liver against IR injury through hemeoxygenase-1 
induction that suppresses the type 1 interferon signaling pathway 
downstream of toll-like receptor 4 [103]. Overall, it is evident that 
melatonin could be used as a successful pharmacological agent to sup
press IR injury during liver transplantation and associated procedures. 

9.2.3. Trimetazidine 
Trimetazidine is a metabolic altering agent that inhibits the oxida

tion of fatty acids and improves myocardial glucose utilization. It is the 
first cytoprotective agent introduced against hepatic ischemic injury. It 
was observed that pretreatment of rats with trimetazidine prevented the 
deleterious effects of ischemia-reperfusion both at the cellular and 
mitochondrial levels in a dose-dependent manner [104]. Furthermore, it 
was reported that repeated administration of trimetazidine for 3 days 
was more effective than a single dose to protect the rat liver against 
IR-induced apoptosis and lipid peroxidation [105]. In addition, there 
was a significant increase in phosphorylated adenosine 
monophosphate-activated protein kinase (p-AMPK) and endothelial ni
tric oxide synthase (eNOS) levels in trimetazidine administered to rats 
for 3 days compared to the single dose. Trimetazidine inhibits β-oxida
tion of fatty acids by blocking long-chain 3-ketoacyl-CoA thiolase, which 
enhances glucose oxidation [106]. During ischemia, the energy obtained 
during glucose oxidation requires less oxygen consumption than in the 
β-oxidation process, which could maintain proper energy metabolism. 

9.3. Antioxidants 

Since excessive formation of ROS and subsequent oxidative stress are 
the major causes of the pathogenesis of IR injury, antioxidant therapy is 
one of the best options to attenuate hepatic IR injury during liver 
transplantation and associated procedures [107]. Under normal physi
ological conditions, the human body has well-developed antioxidant 
defense mechanisms to protect against oxidative impairment. However, 
during pathological or ischemic conditions, the antioxidant defense 
mechanisms will be impaired due to excessive production of free radi
cals and cellular oxidative stress. Glutathione is the most potent and 
powerful natural antioxidant present in all living organisms. It was re
ported that intravenous administration of glutathione during 
ischemia-reperfusion in rat livers significantly prevented hepatocyte 
necrosis with a 50–60 % decrease in AST and ALT levels [108]. Another 
potent and powerful natural antioxidant present in green tea is 
epigallocatechin-3-gallate (EGCG), which is a polyphenol catechin with 
eight hydroxyl groups (− OH) that are important for the antioxidant 
activities to bind and detoxify free radicals [109,110]. It was demon
strated that EGCG treatment attenuated hepatic IR injury by reducing 
oxidative stress and cellular apoptosis [111]. Resveratrol is a natural 
phenol abundant in red wine and berries that has potent antioxidant 
properties. Resveratrol has protective effects against cellular oxidative 
damage and hepatic IR injury through inhibition of endothelin-1 by 
suppressing the extracellular signal-regulated kinase (ERK) signaling 
pathway [112]. Genistein is another potent antioxidant that involves in 
multiple biochemical reactions [113]. It has been suggested that gen
istein might protect liver from IR injury during transplant surgery [114]. 
Even though antioxidant therapy may not be a powerful method to 

Fig. 5. Schematic presentation of the prospective therapeutic approaches to attenuate ischemia-reperfusion injury, promote repair of impaired hepatocytes, and 
regenerate the injured liver tissue. Various pharmacological agents, potent antioxidants, and mesenchymal stem cells from different sources could be used for 
the purpose. 
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prevent IR injury during liver resection and transplant, it could defi
nitely reduce the extent of hepatocyte injury and tissue damage. 

9.4. Stem cells therapy 

Mesenchymal stem cells (MSCs) are multipotent stromal cells that 
have the ability to penetrate into injured tissues, differentiate and 
multiply into specific cells, and induce pleiotropic signaling [115]. The 
new mass of differentiated cells could suppress tissue injury and restore 
normal functions impaired during ischemia-reperfusion. Several studies 
have demonstrated that MSCs derived from bone marrow, umbilical 
cord, or adipose tissue could attenuate hepatic IR injury through sup
pression of oxidative stress, inhibition of apoptosis, or immunomodu
lation [115,116]. Various autocrine and paracrine factors derived from 
the stromal cells seem to serve as reparative functions in the attenuation 
of hepatic IR injury. It was reported that transplantation of bone 
marrow-derived MSCs (BM-MSCs) ameliorates hepatic IR injury through 
inhibition of apoptosis and regeneration of hepatocytes in a rat model 
[117]. In addition, it was shown that systemic administration of adipose 
tissue-derived MSCs (AD-MSCs) maintained hepatocyte integrity and 
suppressed inflammatory responses, oxidative stress, and apoptosis in a 
rodent model of hepatic IR injury [118]. Furthermore, treatment with 
human umbilical cord-derived MSCs (UC-MSCs) prevented neutrophil 
infiltration, hepatocyte apoptosis, and expression of genes associated 
with inflammation and attenuated hepatic IR injury in a rat model 
[119]. It was observed that extracellular vesicles (EVs) derived from 
mouse bone marrow MSCs as well as EVs from human umbilical cord 
MSCs ameliorate hepatic IR injury by suppressing oxidative stress and 
modulating neutrophil inflammatory responses [120,121]. It was also 
noticed that portal vein administration of EVs derived from rat adipose 
tissue stem cells attenuated hepatic IR injury through activation of 
ERK1/2 and inactivation of glycogen synthase kinase-3 β (GSK-3β) 
signaling pathways [122]. The data from these studies indicate that 
MSCs and EVs derived from various sources could be effectively used as 
a therapeutic method to attenuate hepatic IR injury during liver trans
plantation and associated procedures. 

10. Conclusions 

Hepatic IR injury is a pathophysiological process resulting from 
ischemia-mediated cellular impairment that exacerbates upon reperfu
sion. Excessive formation of free radicals and subsequent oxidative 
stress during ischemia and after reperfusion are the major causes of IR 
injury. The resultant acute inflammatory cascade leads to significant 
impairment of hepatocytes and nonparenchymal cells, leading to lipid 
peroxidation, apoptosis, and hepatic necrosis. Multiple levels of phar
macological interventions, antioxidant therapy, and stem cell therapy 
have been tried to attenuate IR injury. Since oxidative stress is the major 
culprit in the pathogenesis of IR injury, antioxidant therapy is one of the 
best options to suppress the process. Recent studies indicated that 
mesenchymal stem cells and exosomes derived from various sources 
may be successfully used as a therapeutic method to alleviate hepatic IR 
injury during liver transplantation and associated procedures. 
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