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ABSTRACT

Hepatic fibrosis (HF) is a progressive condition with serious clinical complications arising from abnormal 
proliferation and amassing of tough fibrous scar tissue. This defiance of collagen fibers becomes fatal due to 
ultimate failure of liver functions. Participation of various cell types, interlinked cellular events, and large 
number of mediator molecules make the fibrotic process enormously complex and dynamic. However, 
with better appreciation of underlying cellular and molecular mechanisms of fibrosis, the assumption that 
HF cannot be cured is gradually changing. Recent findings have underlined the therapeutic potential of a 
number of synthetic compounds as well as plant derivatives for cessation or even the reversal of the processes 
that transforms the liver into fibrotic tissue. It is expected that future inputs will provide a conceptual 
framework to develop more specific strategies that would facilitate the assessment of risk factors, shortlist 
early diagnosis biomarkers, and eventually guide development of effective therapeutic alternatives.
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Hepatic fibrosis (HF) is a pathological condition resulting in 
abnormal proliferation and accumulation of tough fibrous 
connective tissue (scar tissue) in the liver. Although the 
formation of scar tissue is a normal body response to injury, 
in fibrosis, this healing process goes erroneous. Normal 
process of wound healing involves collagen deposition; 
however, the chronic activation of this healing mechanism 
leads to liver pathology. Among a variety of causes/factors or 
stimuli, which bring about this transformation are: chronic 
infection by hepatitis B, C viruses and parasite Schistosoma, 
chronic alcoholism and/or exposure to certain drugs and 
toxins, infections, non-alcoholic steatohepatitis (NASH), 
inherited metabolic diseases like hematochromatosis, 
Wilson’s disease, a-1 antitrypsin deficiency, autoimmune 
diseases such as primary biliary cirrhosis, and auto-immune 
hepatitis.[1] Generally, HF begins with the stimulation of 
inflammatory immune cells to secrete cytokines, growth 

factors, and other activator molecules. These chemical 
messengers direct hepatic stellate cells (HSCs) to activate 
and synthesize collagen, glycoproteins (such as fibronectin), 
and proteoglycans. Deposition of the abnormal products of 
stellate cells, along with portal myofibroblasts, bone marrow-
derived cells, and epithelial mesenchymal tissues (EMT), 
build-up of extracellular matrix (ECM, nonfunctional 
connective tissue) in the liver, and the impairment by 
collagenolysis are simultaneous processes.[2-5] In the long 
run, it may either lead to cirrhosis and related complications 
or may couple with carcinogenesis and ultimate death due 
to failure of normal liver functions.[6,7] Nearly 3 billion and 
180 million people have been exposed to hepatitis B and C 
virus, respectively.[8,9] Epidemiological studies have shown 
that in China, hepatitis B viral (HBV) infection is the 
major cause of liver fibrosis, whereas in the United States, 
Europe, and Japan, hepatitis C viral (HCV) infection and 
alcohol are the main causes.[10,11] In the sub-Saharan African 
region, Schistosoma mansoni infection is reported to be the 
major cause of HF, resulting in almost 0.3 million deaths 
annually.[12] This review covers recent information on the 
general mechanisms of HF, its impact on some biochemical 
parameters, and therapeutic potential of certain antifibrotic 
agents. The discussion outlines possible strategies and 
applications of the published information while designing 
and formulating new treatment regimen.
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FUNCTIONAL CONSEQUENCES OF DIFFERENT 
CELL TYPES

HSCs
HSCs, also known as fat-storing cells or perisinusoidal 
lipocytes, represent almost 5–8% of all healthy liver 
cells. They are located near the hepatocyte laminated in 
the perisinusoidal space of Disse by means of star-like 
dendritic cytoplasmic processes extending along and 
around the hepatic endothelial cells and hypothesized of 
being mesenchymal in origin.[13] HSCs show two different 
phenotypes: quiescent in the normal liver and activated 
in the diseased. As a consequence of this transformation, 
diseased phenotype has altered functions. In the following, 
we summarize morphological and functional differentiation 
of the two phenotypes of HSCs.

Quiescent HSCs
Quiescent HSCs have a star-like shape and their cytoplasm 
encloses numerous lipid droplets, which contain retinoids, 
triglycerides, cholesterol, and free fatty acids.[14] Storage 
and limited release of retinoids is a major function of HSC 
in the healthy liver. An essential and prominent structural 
feature of HSCs is the presence of microfilament bundles of 
actin and intermediate filaments such as desmin, vimentin, 
and synemin.[15] HSCs also express the LIM-homeodomain 
protein Lhx2, a transcription factor responsible for 
maintaining their quiescence.[16] Quiescent HSCs express 
peroxisome proliferator-activated receptor-g (PPAR-g), a 
nuclear receptor considered as fundamental transcriptional 
regulator for adipogenesis that also displays antifibrogenic 
effects by inhibiting type I collagen expression at the 
transcriptional level.[17] Quiescent HSCs also regulate the 
expression of hepatocyte growth factor (HGF), TGF-b, 
insulin-like growth factor-I (IGF-I), and other cytokines in 
an auto- and paracrine manner [Figure 1].[18-20] However, 
the phenotype lacks expression of fatty acid synthase (FAS) 
receptor CD95 (a cellular surface protein with a molecular 
weight of 42-52 kDa that promotes apoptosis).[20] Reportedly, 
HSCs have a role in the expression of some other important 
neural proteins like glial fibrillary acidic proteins, neuronal 
growth factor, synaptophysin, RhoN, glutamine synthetase, 
and neurotrophin receptors.[21]

Activated HSCs
Activation of hepatic stellate cells depends on a number 
of factors discussed under “Introduction,” which are either 
directly or indirectly involved in progression of the HF.[1] 
Activated HSCs develop into myofibroblast-like cell types, 
which are differentiated by the loss of lipid droplets, lack of 
glial fibrillary acidic proteins, and increased cell proliferation. 
Consequently, excessive synthesis of ECM components 
occurs, causing increased expression of a-smooth muscle 

actin (a-SMA) and changes in the expression of L-type 
voltage-operated Ca2+ channels, which are known to 
mediate Ca2+ influx and regulate cellular contraction.[22] 
The activation of HSCs is controlled by the gene expression, 
which is itself regulated by various transcription factors 
briefly described below.

FoxO
Forkhead box gene group O. Its functions and its intracellular 
localization are regulated by growth factor (mainly PDGF) 
activated kinases, especially phosphoinositide 3-kinase 
and protein kinase-B (PKB), through phosphorylation.[23,24] 
Phosphorylation suppresses transactivation and promotes 
the translocation of FoxO proteins from the nucleus to the 
cytosol, reducing the expression of their target genes. The 
transcription factor FoxO is a key player in controlling the 
trans-differentiation and proliferation of HSCs that leads to 
liver fibrosis in vivo.[25]

ILK
Integrin-linked kinase, plays a crucial role in HSC activation, 
fibrogenesis, and transducing signals from the ECM or 
from two known growth factors, TGF-b and ET-1, to 
the cytoplasm.[26] ILK couples the integrins and growth 
factors to downstream signaling pathways, which favor the 
suppression of apoptosis and promote cell cycle progression. 
The increased expression of ILK is unregulated during HF.[26]

PPAR-g
Peroxisome proliferator-activated receptor-g, a nuclear 
receptor transcriptional factor considered to be the 
fundamental transcriptional regulator for adipogenesis 
(anabolic pathways) and also reported to have antifibrogenic 
activity, is expressed by quiescent HSCs. Reduced activity 
of PPAR-g, results in increased HSC activation and 
proliferation.[17]

Kupffer Cells in HF
Kupffer cells are highly phagocytic tissue macrophages 
of the liver, responsible for the removal of circulating 
microorganisms, immune complexes, and debris from 
the blood stream as also detoxicating endotoxins. They 
constitute about 15% of the total liver cell population. 
Moreover, these Kupffer cells take up different substances 
from the circulation via receptor-mediated endocytosis. 
Being a part of the innate immune system, these cells play 
an important role in the regulation of inflammatory processes 
in liver by secreting cytokines such as TNF-α, IL-1, IL-6, and 
reactive oxygen species (ROS), which promote chemotaxis, 
phagocytosis, and ROS production by other inflammatory 
cells.[27]

Kupffer cells, when treated with gadolinium chloride, 
produce interstitial collagenase MMP-13, which reduces 
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ECM deposition during experimental fibrosis.[28] In addition, 
activated Kupffer cells can effectively kill HSC by a caspase 
9-dependent mechanism via the involvement of TNF-related 
apoptosis-inducing ligand (TRAIL).[29,30] Their antifibrotic 
effect is evident by the presence of IL-10, another important 
cytokine that has anti-inflammatory and antifibrotic effects, 
especially in the early stages of fibrosis and during acute 
liver injury.[31] While decreasing collagen production, IL-10 
up-regulates collagenase secretion, resulting in a reduction 
of collagen deposition.

PROFIBROTIC MEDIATORS

The activated HSCs produce a number of cytokines and 
active peptides that promote their constrictive, proliferative, 
and transformative properties in an autocrine manner, 
promoting the development of liver fibrosis.[32-35] Among 
fibrotic mediators, TGF-β is certainly one of the most 
important polypeptides along with PDGF, which is regarded 
as a potent stellate cell mitogen.[36] Activated HSCs are 
known to up-regulate and enhance the autocrine effect 

Figure 1: Early causes and mechanisms of matrix degradation and progression of hepatic fibrosis. Stimulation of Kupffer cells, neutrophils, and 
T-cells cause secretion of various cytokines and profibrotic mediator to convert quiescent to activated hepatic stellate cells (HSCs). HSCs are 
associated with matrix degradation due to increased production of membrane type matrix metalloproteinase-1 (MMP-1), matrix metalloproteinase-2, 
-3 (MMP-2, -3), and tissue inhibitors of metalloproteinases (TIMPs), leading to amassing of scar tissue
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of receptors for IL-10, FAS (CD95), PDGF, FGF, VEGF, 
TGF-b1, and p75 (a member of the TNF receptor super 
family).[20,32,35,37,38] At the same time, these HSCs also down-
regulate the expression of IGF-I receptor, three TGF-b type 
receptors, and signaling mediators commonly named “Smad 
proteins.”[20,39]

In HSCs, TGF-b participate in intracellular signaling cascade 
and transcriptional regulation of the genes: Ras, Raf-1, 
MEK, and MAPK.[40] Though the main source of TGF-b in 
the fibrotic liver is activated HSCs, liver endothelial cells 
and Kupffer cells also contribute to synthesis of this growth 
factor.[41]

Cholestasis (decreased excretion of bile) may result in 
accumulation of bile acids in liver, which encourages 
biliary epithelial cells to secrete ET-1, TNF-a, and PDGF. 
A 21-amino acid peptide, ET-1, induces HSC activation, 
invasiveness, and fibrogenesis by up-regulating type-I collagen 
gene expression and procollagen a-1 during the early phase. [42] 
The up-regulation of ET-1 is catalyzed by endothelin-
converting enzyme-1 that continuously converts precursor 
ET-1 into mature ET-1 under favorable conditions.[42]

MOLECULAR BASIS OF HF

HF involves the activation of HSCs and over-expression 
and over-secretion of collagens, resulting in the excessive 
accumulation of ECM proteins. Broadly, development of the 
fibrosis has two main phases: inflammation and fibrogenesis. 
Initially, various hepatotoxic factors induce synthesis of 
mediators, which cause inflammatory reactions within 
hepatic cells. Mediators of inflammation phase bring about 
the strenuous phenotypic change from quiescent HSCs to 
activated HSCs, which have altered ECM composition. 
In the course of activation process, transformed HSCs 
become proliferative and acquire characteristic features. 
Morphologically, they appear myofibroblast-like, which are 
devoid of lipid droplets, lack glial fibrillary-acidic protein, 

have excess production of ECM components, and exhibit 
increased expression of a-smooth muscle actin (a-SMA) 
fibers. Stimulated by TGF-β released initially from Kupffer 
cells, activated HSCs also start to synthesize markedly 
increased amounts of ECM proteins; specifically type-I and 
type-III collagen.

Activated HSCs show chemotactic response and migrate 
towards regions of injury and start accumulating around 
damaged tissue. The same cytokines, which are mitogens 
for HSCs, play the role of chemo-attractants for these cells. 
Convincing evidence supports the secretion of chemo-
attractants (for instance, monocyte chemotactic protein, MCP-
1), which not only activate HSCs but also attract other activated 
HSCs. The cytokines promote the recruitment of monocytes 
and leukocytes.[43] Activated HSCs express the cytoskeleton 
protein, a-smooth muscle actin (a-SMA), equipping the cells 
with a contractile apparatus and various connective tissue 
proteins including collagen types I, III, and IV.[38,44,45] HSCs are 
thus capable of constricting individual sinusoids as well as the 
entire fibrotic liver. A balance between ET-1 and NO is assumed 
to regulate the contractile activities of HSC, wherein ET-1 is the 
key contractile stimulus of HSC while NO an antagonist of ET-1 
produced by HSC, Kupffer cells, and liver endothelial cells.[42]

During fibrosis, the low-density matrix that is normal for 
healthy liver is degraded and replaced by an excess of non-
functional collagenous ECM tissue. Calcium-dependent 
enzymes and matrix metalloproteinases (MMP) disrupt 
both collagen and non-collagenous compounds of ECM.[46] 
Activated HSCs also secrete MMP-1 (interstitial collagenase), 
MMP-2 (Gelatinase A), and MMP-3 (Stromelysin 1), which 
degrades the main components of ECM such as type IV 
collagen and laminin. In a way, the lytic activities indirectly 
perpetuate the deposition of collagen type I and III. Moreover, 
in fibrotic liver, markedly increased levels of tissue inhibitors 
of matrix metalloproteinases (TIMPs) have been recorded. 
They are capable of inhibiting the action of MMP-1, thereby 
causing the accumulation of collagen fibers [Figure 1].[47,48]

Table 1: Changes in the levels of amino acid and proteins noted during the progression of hepatic fibrosis
Category Biomolecules Source Status in HF and remarks References
Amino acid Hydroxyproline Serum Significant increase in patients with HF of alcoholic origin [57]
Proteins Total proteins Urine Significant increase in urinary Excretion due to an increased  

catabolism of proteins
[58]

Collagen Liver Owing to the enhanced expression of TGF-b, there is an increased collagen 
synthesis in fibrotic liver

[59-61]

Albumin Serum Marked decrease of serum albumin level has been reported [62,63]
Haptoglobins Serum Because of the enhanced expression of TGF-b there is a significant 

decrease in the levels of haptoglobins
[64,65]

a-2 Macroglobulin Serum Increased synthesis of a-2 macroglobulin enhance fibrosis by inhibiting the 
catabolism of other ECM proteins

[65,66]

Apolipoprotein A-1 Serum Decreased levels of serum Apo A-1 has been observed in liver fibrosis [67]
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into four stages: fibroblasts recruitment, followed by HSC 
differentiation, their proliferation, and subsequent secretion 
and remodeling of ECM.[50,51] In schistosomiasis, there 
is granuloma formation followed by inflammation that 
in subsequent steps causes portal hypertension, collagen 
deposition, and gastrointestinal bleeding mediated by TH2 
cytokines (i.e., IL-4, IL-5, IL-10) and TGF-b.[52,53] Literature 
shows that high levels of IL-5 and IL-13 are found in subjects 
with parasite-induced liver fibrosis.[54] Contrary to a general 
mechanism, some interesting work published in the recent 
past also showed inhibitory roles of TNF-a, IL-12, INF-g, and 
NO, associated with the TH1 response in schistosomiasis.[53]

BIOCHEMICAL ABNORMALITIES AND 
HISTOLOGICAL CHANGES OBSERVED DURING 
PROGRESSION OF HF

Hepatic toxicity is always accompanied by impaired 
hepatocyte metabolism and deposition of connective tissue 
components in the liver.[55,56] Update of literature reveals 
that biochemical abnormalities are mainly associated with 
disruption in the levels of intermediate metabolites or their 
end products in experimentally induced as well as naturally 
occurring HF. Moreover, enzymes like GOT, ALP, LDH, 
and many others have been reported to vary during the 
progression of HF. The summary of these abnormalities in 
either of the above conditions is listed in Tables 1-3.[57-79]

Like vitamins, minerals and metabolites also play important 
roles in the living systems. The minerals are components 
of metalloproteins and metalloenzymes, apart from acting 
as enzyme cofactors. As these compounds are metabolized 
mainly in the liver, functional impairment of hepatic tissue in 
fibrosis and cirrhosis alters their levels as well. A compilation 
of levels of important vitamins, minerals, and metabolites 
altered during HF is given in Table 4.[80-91]

Table 2: Adjustments in the levels of different enzymes 
from sera and liver tissue during progression of 
hepatic fibrosis

Enzymes References
LDH

TLDH Serum Significant increase 
in total LDH activity in 
the serum

[68]

LDH1, LDH2, LDH3 Serum, 
Liver

Unaltered activity of 
these isoenzymes of 
LDH

[69,70]

LDH4 Serum, 
Liver

Increased activity of 
LDH4

[70]

LDH5 Serum, 
Liver

The appearance 
of LDH5 in the 
serum indicates 
hepatocellular 
damage. Increased 
activity of LDH5

[69,70]

ALP Serum Increased activity [70]
GOT Serum Increased activity [70]
GPT Serum Increased activity [70]
G6Pase Serum Increased activity [71]
GGT Serum Increased activity [65]
Hyaluronidase Serum Decreased activity [72]
β-glucuronidase Liver Increased activity [73]
Urea cycle enzymes Serum Unaffected [74]
LDH: Lactate dehydrogenase, ALP: Alkaline phosphatase, GOT: Glutamic 
oxaloacetic transaminase, GPT: Glutamate pyruvate transaminase, G6Pase: 
Glucose 6 phosphatase: GGT: Gamma glutamyl transferase

Table 3: Status of various biologically important molecules during liver fibrosis
Category Biomolecules Source Status in HF References
Lipid Lipid Peroxides Serum Lipid peroxidation lead to decrease in fluidity of the lipid phase of 

biomembrane and have important consequences in relation to many of the 
major metabolic functions dependent on membrane structure and integrity. 
Increased oxidative stress and lipid peroxidation has been reported in HF

[75]

Triglycerides Liver Significantly increased levels [71]
Malondialdehyde (MDA) Liver Significantly increased levels [71]
Cholesterol Serum Total serum cholesterol levels are markedly depressed in HF. The 

decreased serum cholesterol may be due to the reduction in the packed 
cell volume associated with chronic liver diseases. However, decreased 
serum cholesterol level does not have much clinical significance in the 
physiologic system

[76]

GAG Hyaluronan Serum Marked increase in tissue bound and circulating Hyaluronan has been 
reported

[71,77]

Hormone Insulin Plasma Hyperglycemia and impaired glucose tolerance have also been observed 
in patients with established HF

[78]

In the sub-Saharan African region, Schistosoma mansoni 
infection is the major cause of HF, affecting more than 
200 million people of tropical countries, and is accepted 
to be highly endemic, specifically in agricultural regions 
of Egypt and Sudan.[49] Fibrosis caused by schistosomes 
is characteristically periportal type and can be subdivided 
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Substantial literature is available on the histological 
changes occurring during HF.[58,70] These reports invariably 
demonstrate significant decrease in “liver weight” 
and decreased “liver to body weight ratio” in N'-
Nitrosodimethyl amine (NDMA)-induced HF.[59,70] 
Decreased protein synthesis, cell necrosis, and collapse 
of liver parenchyma in late stages of HF are among 
suggested reasons. As a reference, in this section of 
review, we have taken up the changes, which occur in the 
liver only due to NDMA administration in mammalian 
model [Figure 2]. Immuno-histochemical (IHC) staining 

using monoclonal antibodies showed the presence of 
a-SMA in NDMA-treated liver sections [Figure 2b].  
The presence of a-SMA convincingly showed that it was 
synthesized by activated HSCs during the course of HF. 
Normal liver specimens do not stain for a-SMA [Figure 2a]. 
IHC staining clearly demonstrated much higher number 
of positive stained cells in the fibrotic area when compared 
with normal areas of the liver sections.[70] In a recent study, 
peculiar changes in the RBC rheology along with the 
changes in other blood-related parameters and enzymes in a 
mammalian fibrotic model have also been demonstrated.[79]

Figure 2: Immunohistochemical staining of a-smooth muscle actin (a-SMA) showing activated hepatic stellate cells during the progression of N'-
Nitrosodimethyl amine (NDMA)-induced hepatic fibrosis in rats. (a) Control liver (×100) demonstrates absence of a-SMA staining and, (b) NDMA 
treatment day 21 (×100) exhibiting significant staining of a-SMA with enormous number of activated stellate cells in fibrotic zone

Table 4: Variations in the levels of vitamins, minerals, and other indispensable metabolites in the fibrotic liver
Category Biomolecules Source Status in HF References
Vitamins Ascorbic acid Liver, Serum Significant decrease [80]

1a-25 
Dihydroxyvitamin D

Plasma Significant decrease in the plasma level of 1a-25 Dihydroxyvitamin D 
resulting in the retention and resorption of calcium ions in kidney tubules

[81,82]

Minerals Sodium Serum Significant decrease [83,84]
Potassium Serum, Liver Significant decrease [63,85]
Calcium Serum Significant decrease [86]
Magnesium Plasma, Serum Significant decrease [87,88]
Phosphorus Liver, Serum Significant decrease [76]

Metabolites Creatinine Serum, Urine An abnormally low serum creatinine concentration has been observed in 
patients with severe hepatic disease. This decrease is due to decreased 
synthesis of creatinine from diminished muscle mass and inadequate 
production of creatine, a creatinine precursor, by the fibrotic liver

[89,90]

Bilirubin Serum Increased levels [70,71]
Uric acid Serum, Urine Significantly elevated uric acid levels were observed in serum and urine 

samples because uric acid is the end product of purine catabolism, 
an elevated plasma level and urinary excretion of uric acid indicates 
increased degradation of nucleic acids in HF

[76,82]

Urea Blood Normal blood urea levels were observed in hepatic fibrosis indicating the 
normal renal functions

[91]

a b
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ANTIFIBROTIC STRATEGIES

Recent research in molecular biology has helped to discover 
and better characterize several elements that are perfectly 
and dynamically involved in making the liver fibrotic. This 
deeper molecular understanding of the pathogenesis of liver 
fibrosis has opened up opportunities for novel and exciting 
complementary therapeutic approaches. A remarkable 
achievement has been the demonstration of reversibility 
of advanced fibrosis and even cirrhosis after administering 
certain anti-fibrotic agents.[70,71,79]

Antifibrotic compounds are classified in accordance with 
their mechanism of action [Table 5].[92-110] For instance, 

compounds such as antioxidants and those with properties 
of reducing inflammation, promoting ECM degradation, 
inhibiting HSC activation and proliferation, reducing ECM 
production by HSC, neutralizing HSC contractile response, 
and stimulation of HSC apoptosis.

Participants like ECM proteins, some receptors mediating 
cell–ECM interactions, cytokines, integrins, growth factors 
(principally TGF-b and PDGF) and post-receptor signal 
regulators (i.e., Smads), and transcription factors (principally 
a decreased expression of PPAR-g) can be the focus of an 
antifibrogenic therapeutic strategy.[39,98,99,101,109] Even though 
a large number of drugs have also been developed for 
antifibrotic effects, they have their own limitations and side 

Table 5: Existing antifibrotic strategies, target molecules, and their mechanism of action in obstructing or 
regressing hepatic fibrosis

Antifibrotic strategy Compound Mechanism of action References
TGF-b inhibition 
strategies

N-acetyl-L-cysteine Block TGF- b -dependent Smad pathway signaling in HSCs, oppose the effect of 
ROS, induces cell cycle arrest, favor redox-mediated extracellular proteolysis of 
Platelet-derived growth factor (PDGF) receptor type b

[92,93]

Prostacyclin Suppress collagen production by inhibiting CTGF activity [94]
IL-10 Potent anti-TGF-b, suppress the activation of NF-kB as well as messenger RNA 

expression of TNF-a and macrophage inflammatory protein- 2 (MIP-2)
[19,95]

IFN- g Inhibits the TGF-b -induced phosphorylation of Smad3. Induces the expression 
of Smad7 (an effective inhibitor of TGF-b-induced fibrogenesis)

[39,96]

Prostaglandin E2 (PGE2) Suppress TGF-b1-mediated induction of collagen by HSCs [97]
PPAR-γ stimulation 
strategies

Curcumin Interrupt the PDGF and EGF (Epithelial growth factor) signaling pathway 
resulting in the induction of gene expression of endogenous PPAR-g gene 
causing the suppression of the expression of TGF-b, a-SMA and MCP-1 genes

[98]

Thiazolidinediones Reduce TGF-b mRNA expression; inhibit TGF-b induced human type I 
procollagen promoter activity in human HSCs by interrupting the inhibition of 
PPAR-g transcriptional activity

[99,100]

15-deoxy-delta12,14-
prostaglandin J (2)

These PPAR-g agonists markedly inhibit TGF-b1-induced CTGF expression in 
HSCs, inhibit cell growth both through cell cycle arrest and an increase in apoptosis.

[101]

Apoptosis stimulation 
strategies

Adiponectin An adipokine released by HSCs, critical in maintaining the HSC quiescent 
phenotype or in reversing hepatic fibrosis by induction of activated HSC apoptosis

[102]

IGF-1 Treatment of activated HSCs with IGF-I is also able to induce apoptosis. 
Over expression of IGF-I by activated HSCs restrict their activation, attenuate 
fibrogenesis and accelerate liver regeneration.

[20,103]

Gliotoxin Induce HSC apoptosis and attenuate the liver fibrosis through inhibition of NF-kB. [104]
Sulfasalazine Inhibit the autophosphorylation of IKK-a and IKK-b and the subsequent 

activation of the IKK (Inhibitor kappa kinase) complex. Thus it helps in the rapid 
clearance of a-SMA positive fibroblast, decreases hepatic expression of type 1 
procollagen and TIMP-1 increases the hepatic MMP activity and accelerate the 
resolution of hepatic fibrosis.

[105]

Suppression/
inhibition of HSCs 
proliferation and 
activation

Brain natiuretic peptide Suppress HSCs proliferation [106]
Retinoic acid Suppress HSCs proliferation [107]
L-Cysteine Suppress HSCs proliferation and activation [108]
Serine protease inhibitor-
Camostat mesilate

Inhibit HSCs activation [108]

Dilinoleoyl phosphatidyl 
colchicines

Inhibit HSCs activation [109]

PPAR-g antagonist 
rosiglitazone

Inhibit HSCs activation [109]
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effects. Interestingly, some recent studies have highlighted 
remarkable therapeutic effects of plant derivatives and the 
whole phytoextracts in reversing HF [Table 5].

Besides, few other compounds have been demonstrated to 
possess antifibrotic properties, as given below briefly.

Relaxin
A peptide hormone, has been shown to be antifibrotic that 
works by decreasing TIMP-1 and TIMP-2 expression in HSCs, 
which enhances matrix degradation and reduces interstitial 
collagen deposition.[111,112] When added to cultured TGF-
b1-stimulated rat HSCs, relaxin displays anti-TGF-b effects 
by inhibiting collagen over-expression in vitro and reducing 
the level of a-SMA.[111]

Imatinib
A drug used for the treatment of chronic myelogenous 
leukemia and gastrointestinal stromal tumors, inhibits 
PDGF-b receptor kinase.[113] This is a potentially useful 
property for attenuating liver fibrosis. Despite proven 
antifibrotic effects in cultured HSCs as well as in animal 
models of liver fibrosis, this drug has a limitation due to its 
cardiotoxic side effects.[114]

Angiotensin II receptor antagonist
Circulating levels of angiotensin II (ANGII), a powerful 
vasoconstrictor factor, frequently increase in chronic liver 
diseases. In these conditions, HSCs proliferate, acquire 
contractile properties, and excessively synthesize endothelin, 
PDGF, and chemokines.[33,115] In vitro and in vivo studies on 

Table 7: Modern approaches of gene therapy used in the treatment of liver fibrosis
Target achieved Gene/Oligonucleotides inserted Method of gene delivery
Reduction of Collagen 
deposition

Rat interferon-a,[145] human pro-matrix metalloproteinase-1,[146] antisense 
complementary to the 3¢-portion of rat TGF- b1 mRNA,[147] human 
interleukin-10,[148] recombinant a-melanocyte stimulating hormone,[149] 
mouse smad-7[150]

Adenovirus, Recombinant Adeno-
associated virus, Electroporation

Decreased expression of 
Collagen-I mRNA

Mitochondrial superoxide dismutase (SOD),[151] rat hemeoxygenase-1,[152] 
human interleukin-10[148]

Adenovirus, Recombinant Adeno-
associated virus, Electroporation

Down regulation of TGF-b  
and TNF-a

Mitochondrial superoxide dismutase (SOD),[151] matrix 
metalloproteinase-8,[153] rat hemeoxygenase-1,[152] human interleukin-10,[148] 
recombinant a-melanocyte stimulating hormone[149]

Adenovirus, Recombinant Adeno-
associated virus, Electroporation

Reduction in oxygen free  
radical formation

Mitochondrial superoxide dismutase (SOD)[151] Adenovirus

Reduced expression of  
a-SMA

Rat interferon-a,[145] human pro-matrix metalloproteinase-1,[146] antisense 
complementary to the 3¢-portion of rat TGF- b1 mRNA,[147] mouse smad-7[148]

Adenovirus

Down regulation of TIMP-1 
mRNA

Rat interferon-a,[145] human interleukin-10,[148] recombinant a-melanocyte 
stimulating hormone[149]

Adenovirus, Electroporation

Reduction of PDGF protein 
expression

Antisense mRNA complementary to the 5¢-coding sequence of PDGF 
B-chain[154]

Adenovirus

Upregulation of MMP-2 and 
MMP-9

Antisense mRNA complementary to the 5¢-coding sequence of PDGF 
B-chain[154]

Adenovirus

Reduction of fibrous regions 
and pseudo module formation

Antisense mRNA complementary to the 5¢-coding sequence of PDGF 
B-chain,[154] human hepatocytes growth factor[155]

Adenovirus, Electroporation

Table 6: Known phytoextracts and their derivatives with probable therapeutic action used in traditional medicine 
to treat hepatic fibrosis

Extracts (source) Therapeutic action References
Turbud, Operculina turpethum (white roots) Inhibit HF by reducing the expression of a- SMA in HSCs [70]
Curcumin, Curcuma longa (roots) Inhibit HF by suppressing the activation of HSCs, activate PPAR-γ to reduce 

cell proliferation, induce apoptosis and suppress ECM gene expression
[71]

Silymarin, Silybum marianum Inhibit HF by suppressing the activation of HSCs [71]
Matrine and Oxymatrine, Sophorae flavescentis (roots) Inhibit PDGF and TGF-b1 actions [118]
Taurine, Calculus bovis Inhibit TGF-1 action, collagen formation, reduce oxidative stress [119]
Rehin, emodin, Rheum palmatum (roots and rhizome) Inhibit TGF-b1 expression, anti-HSC proliferation [120]
Tetramethylpyrazine, Ligusticum chuanxiong (rhizome) Anti-oxidation, synergic anti-hepatic fibrosis effect with rehin, [121]
Ginkgo biloba (leaves) Suppress NF-κB activation, inhibit TGF-b1 and collagen gene expression [122]
Gypenoside, Gynostemma pentaphyllum Inhibits HSCs proliferation by arresting HSCs at G1 phase [123]
Salvia miltiorrhiza Reduces the synthesis of TGFb-1, procollagens I and III and TIMPs [124]
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HF suggest that the angiotensin II type 1 receptor antagonist 
suppresses proliferation, collagen synthesis, and expression 
of profibrogenic cytokines (TGF-b1 and CTGF) in activated 
HSCs.[115-117] Two mechanisms of action have been suggested: 
first, the angiotensin II type 1 receptor antagonist inhibits 
activated HSCs by blocking angiotensin II type 1 receptors 
expressed on the surface of HSCs; second, it suppresses the 
activation of HSCs as a result of the decrease in TGF-b1. 
Studies on the use of botanicals or their active compounds 
for treating HF are summarized in Table 6.[70,71,118-124]

Liver fibrosis caused by S. mansoni is of great concern in 
tropical countries of the world, and owing to repeated anti-
schistomic chemotherapy, there are reports of emergence of 
drug-resistant strains, which have lead researchers to search 
for suitable alternative medicines. Like in non-parasitic 
HF, botanicals or phytoextracts are given proper attention 
in treatment against trematode-induced liver fibrosis 
due to their friendly interaction and safer action. Many 
botanicals like Daucus carota,[125] Commiphora molmol,[126] 
Artemisia anmia,[127] Combretum sp.,[128] crude oil of Nigella 
sativa,[129-132] Zingiber officinale,[133] Solanum nigrum,[134] 
Allium sativum,[135,136] Curcuma longa,[137] and Camellia 
sinesis[138] have been reported to possess anti-schistosomal 
properties. Moreover, among synthetic drugs, high levels of 
Somatostatin and Paeoniflorin have been shown to reduce 
fibrosis by inhibiting HSC activation in humans and collagen 
synthesis in IL-13-stimulated HSC in murine S. japonicum 
infection, respectively.[139,140] Moreover, thiazolidinedione 
drug, rosiglitazone, and glucocortocoid dexamethasone, have 
been observed to attenuate HF by activating the PPAR-g 
ligand in murine schistosomiasis.[141,142]

GENE THERAPY APPROACH FOR HF

HF involves the expression and suppression of a number 
of genes. Many attempts have been made to induce the 
cessation or the reversal of the process, but all of them 
did not produce desirable results, either due to the low 
uptake by the target cells or major side effects on other cell 
populations.[143] A recent report demonstrated the reversal 
of HF and cirrhosis in rodent model by targeting HSCs via 
liposomal drug delivery. The targeting complex contained 
siRNA against the collagen chaperon heat shock protein 
47 (HSP47) bound to vitamin A.[144] These antifibrotic 
vitamin A–coupled liposomes decrease collagen production 
and promote degradation of ECM. However, thriving steps 
are being taken to attenuate experimental liver fibrosis with 
gene therapy. A brief review of novel strategies relying on 
gene therapy is given in Table 7.[145-155]

Out of many, stem-cell transplantation still seems to be a 
more promising alternative approach.[156] It is also believed 
that cell types including neurons, cardiac muscle cells, 

skeletal cells, kidney cells, liver cells, etc., have similar origin 
and arise from bone marrow (BM) stem cells. BM-derived 
stem cells have great power of regeneration and may develop 
into specific cellular phenotypes with different functions. 
These stem cells play an active role in liver repair and hepatic 
regeneration and may also support regeneration of cardiac/
skeletal muscle and brain tissue. Recent studies suggested 
that hematopoietic stem cells migrate from the bone marrow 
to the injured liver due to the hypoxic milieu generated at 
the injured hepatic site and formation of chemo-attractant 
gradients.[157] Using markers such as aldehyde dehydrogenase, 
it has been demonstrated that these migrated stem cells fuse 
with the host hepatocytes or liver cells and help to generate 
fresh cell types.[158]

CONCLUSIONS

HF is a severe consequence of needless accumulation of 
excessive connective tissue in the liver. This amassing 
occurs because either ECM components are overproduced 
(fibrogenesis) or poorly degraded, or both contribute to it. It 
would be of great interest if the fibrosis pathology research 
proceeds to gain insights into proteomics to understand the 
normal and activated HSCs’ function. Only then would a 
comprehensive understanding of the underlying molecular 
mechanisms be possible. New propositions can then be put 
forward for the viewpoint of impairments within disease 
processes. The transformation from basic research to 
practical investigations is expected to provide novel measures 
for prospective therapeutics against liver diseases. Since 
human liver fibrosis can be caused by various pathologies 
(viral, alcoholic, metabolic, etc.) and each one of these 
might respond better to one or another drug, it is advisable 
to reproduce animal models to evaluate effectiveness 
and therapeutic potential of relatively safer and targeted 
drugs. Trials for safer or well-tolerated drugs with use in 
multiple diseases, even for schistosome-induced fibrosis,[159] 
are underway and will carry great importance since the 
real efficacy of drugs that are likely to block activation or 
transformation of HSCs already tested in vitro can be directly 
assessed. So-called modern therapeutic procedures like gene 
therapy, BM-derived stem cells, and approaches utilizing 
siRNA along with hepatocyte transplant to reconstitute 
normal liver function may be expected as future areas to 
explore possibilities of treatment against HF.
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