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Abstract Clinically significant interactions occurring during antituberculous chemo-

therapy principally involve rifampicin (rifampin), isoniazid and the fluoroquin-

olones. Such interactions between the antituberculous drugs and coadministered

agents are definitely much more important than among antituberculous drugs

themselves. These can be associated with consequences even amounting to ther-

apeutic failure or toxicity. Most of the interactions are pharmacokinetic rather

than pharmacodynamic in nature. The cytochrome P450 isoform enzymes are

responsible for many interactions (especially those involving rifampicin and iso-

niazid) during drug biotransformation (metabolism) in the liver and/or intestine.

Generally, rifampicin is an enzyme inducer and isoniazid acts as an inhibitor. The

agents interacting significantly with rifampicin include anticoagulants, anticon-

vulsants, anti-infectives, cardiovascular therapeutics, contraceptives, glucocor-

ticoids, immunosuppressants, psychotropics, sulphonylureas and theophyllines.

Isoniazid interacts principally with anticonvulsants, theophylline, benzodiapines,

paracetamol (acetaminophen) and some food. Fluoroquinolones can have absorp-

tion disturbance due to a variety of agents, especially the metal cations. Other

important interactions of fluoroquinolones result from their enzyme inhibiting

potential or pharmacodynamic mechanisms. Geriatric and immunocompromised

patients are particularly at risk of drug interactions during treatment of their

tuberculosis. Among the latter, patients who are HIV infected constitute the most

important group. This is largely because of the advent of new antiretroviral agents

such as the HIV protease inhibitors and the non-nucleoside reverse transcriptase

inhibitors in the armamenterium of therapy. Compounding the complexity of drug

interactions, underlying medical diseases per se may also contribute to or aggra-

vate the scenario. It is imperative for clinicians to be on the alert when treating

tuberculosis in patients with difficult co-morbidity requiring polypharmacy. With

advancement of knowledge and expertise, it is hoped that therapeutic drug mon-

itoring as a new paradigm of care can enable better management of these drug

interactions.

Today, tuberculosis is still a serious global prob-
lem.[1] Whilst HIV-attributed tuberculosis is found
in both developing and industrialised countries,[1]

geriatric tuberculosis appears to be a more impor-
tant problem in the latter.[2,3] Standardisation of
treatment for tuberculosis, as part of the national
tuberculosis programme has been recommended by
authorities like the World Health Organization
(WHO).[4] Furthermore, the clinical importance of
drug interactions during antituberculous chemo-
therapy is being increasingly appreciated.[5]

1. General Considerations in 
Drug Interactions

1.1 Mechanisms of Drug Interactions and
Patients at Risk

Drug interactions are usually considered clini-
cally significant when precipitation of toxicity or a
change of therapeutic activity is likely to ensue on
their coadministration.[5] Pharmocokinetic interac-
tions refer to those pertinent to derangement in the
movement or disposition of the drugs. These in-
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clude absorption, distribution, and clearance of
drugs, largely by hepatic biotransformation, renal
elimination and other ancillary routes.[6] Disease
states can also enhance the drug interactions. Ex-
amples include diabetes mellitus, chronic renal
failure and HIV infection.[6] However, changes in
drug binding by proteins do not usually produce
clinically significant effects.[7] Biotransformation
in the liver is modulated by age and intrinsic liver
disease, the former might be related both to hepatic
blood flow and liver mass. Malnutrition might have
a putative negative effect on drug oxidation. Alco-
hol and cigarette smoke are potent hepatic enzyme
inducers.[8,9] Pharmacodynamic interactions refer
to those resulting from the enhanced competition
or inhibition of binding of receptors at the target site
of drug action, or some change in the pathophysi-
ological mechanisms with either consequential
additive/synergistic or antagonistic effects. Dis-
ease states can also contribute to such a scenario.
An example is isoniazid-induced encephalopathy in
patients receiving dialysis as illustrated in several
case reports.[10]

During antituberculous chemotherapy, both the
aforementioned types of interactions can be encount-
ered, though pharmacokinetic interactions are
more common, especially between rifampicin (rif-
ampin) and other drugs used concomitantly.[11-13] The
patient populations with tuberculosis particularly
at risk for clinically significant pharmacological
interactions include the HIV-infected patients,[6,14]

elderly patients[15] and recipients of organ trans-
plants.[16] The first group will be discussed in detail
in section 4. Elderly patients are at risk largely be-
cause of likelihood of polypharmacy, intrinsic ef-
fects of age per se, as well as the effects of possible
nutritional compromise and chronic renal and liver
impairment on the drug pharmacokinetics. Organ
transplant recipients are at risk through possible
nutritional compromise and because of similar rea-
sons, with the exception of old age. Organ trans-
plant recipients are particularly at risk when drug
interactions diminish the efficacy of the immuno-
suppression regimen leading to graft dysfunction
or rejection.[16]

1.2 The Cytochrome P450 Enzyme System

Cytochrome P450 (CYP450) represents a group
of heme-containing enzymes largely located on the
membrane of the endoplasmic reticulum of the he-
patocytes and enterocytes. This superfamily of
more than 30 related enzymes are responsible for
oxidative metabolism of many drugs, as well as
endogenous substances such as prostaglandins,
fatty acids and steroids.[17] The superfamily can be
divided into families and then subfamilies. In
humans, enzymes of the CYP1, CPY2 and CYP3
families are responsible for the vast majority of
drug metabolism.[18] Table I depicts some repre-
sentative substrates, inhibitors and inducers of the
CYP450 isoform enzymes.[17-23] As one can see, rif-
ampicin and isoniazid, the two main antitubercu-
lous drugs, together with ciprofloxacin, the new
antimycobacterial agent are conspicuously pres-
ent, as inducer or inhibitor among others including
a number of anticonvulsants, cardiovascular drugs,
psychotropic agents and antiretroviral compounds.
Drug interactions might be theoretically somewhat
predictable based on the knowledge of which com-
pounds induce and inhibit specific CYP450 en-
zymes.[20-22,24] Induction and inhibition of en-
zymes are dose- and time-dependent phenomena
that are generally reversible once the incriminated
agent has been successfully identified and with-
drawn.[6,20-22] Induction interactions require long
term drug administration and occur more slowly
than do inhibition interactions because an increase
in the synthesis of enzymes is required. However,
due to genetic polymorphism in the population, the
impact of an inducer on the enzyme activity of a
poor versus extensive metaboliser can be quite dif-
ferent.[20] It is noted that induction effect with ri-
fampicin can occur anytime between <5 to 14
days.[12,21,22] Similarly, some time is required after
withdrawal of the inducer for the induced-enzyme
system to return to its baseline activity.[6] For inhi-
bition effects, their disappearance is in general
rapid upon cessation of the inhibitor.[6,20,21] Fur-
thermore, induction or inhibition not only changes
the serum concentrations of the parent drugs but
also can alter those of the drug metabolites, some
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Table I. Representative substrates, inducers and inhibitors of cytochrome P450 (CYP) enzymes

Enzyme Substrate Inducer Inhibitor

CYP1A2 Caffeine Cigarette smoke Cimetidine

Clozapine Phenobarbital (phenobarbitone) Ciprofloxacin

Phenacetin Phenytoin Enoxacin

R-warfarin Rifampicin (rifampin) Erythromycin

Tacrine Fluvoxamine

Theophylline Isoniazid (?)

Ritonavir

CYP2C9/10 Phenytoin Phenobarbital Fluconazole

S-warfarin Phenytoin Isoniazid

Tolbutamide Rifampicin

CYP2C19 Citalopram Phenobarbital Cimetidine

Diazepam Phenytoin Diazepam

Imipramine Rifampicin Fluoxetine

Lansoprazole Isoniazid

Pantoprazole Omeprazole

Omeprazole Sertraline

S-mephenytoin

CYP2D6 Amiodarone Amiodarone

Amitriptyline Cimetidine

Clomipramine Fluoxetine

Clozapine Fluphenazine

Codeine Haloperidol

Desipramine Paroxetine

Dextromethorphan Propoxyphene

Encainide Quinidine

Flecainide Ritonavir

Fluoxetine Sertraline

Fluvoxamine Venlafaxine

Haloperidol

Imipramine

Metoprolol

Mexiletine

Nortriptyline

Paroxetine

Perphenazine

Propafenone

Propranolol

Risperidone

Thioridazine

Timolol

CYP2E1 Chlorzoxazone Ethanol

Halothane Isoniazid

Methoxyflurane Phenobarbital

Paracetamol (acetaminophen)

CYP3A3/4 Alprazolam Carbamazepine Cimetidine

Astemizole Phenobarbital Clarithromycin

Carbamazepine Phenytoin Diltiazem

Cisapride Rifampicin Erythromycin

Cyclosporin Fluconazole
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of which can be therapeutically active and/or
toxic.[20] Therefore, the overall pharmacological
results of induction or inhibition may be complex
and knowledge of changes in parent drug levels
may not be sufficient to enable prediction of con-
sequences of drug interactions.[6,22] Unlike oxida-
tive metabolism in the CYP450 system, glucuro-
nidation and sulphation are generally not affected
by enzyme inducers to the same extent.[18]

1.3 The P-Glycoprotein System

P-glycoprotein, a 170 kDa phosphorylated and
glycosylated plasma membrane protein belonging
to the ATP-binding cassette superfamily of trans-
port proteins was first described in the 1970s.[25]

These proteins located largely in the liver and in-
testine, are encoded by the MDR (multidrug resis-
tance) genes and serve to regulate the transport of
drugs.[26,27] The substrates include many of the
same drugs that are metabolised by the CYP450
enzymes especially those of the CYP3A fam-
ily.[23,28] Examples are HIV protease inhibitors,
lovastatin, erythromycin, rifampicin, various anti-
cancer drugs (such as doxorubicin, vinblastine,
paclitaxel and etoposide), immunosuppressive
drugs (such as cyclosporin and tacrolimus) and ste-
roids. Inhibitors of the P-glycoprotein transport
system include HIV protease inhibitors, tamoxi-

fen, ketoconazole, midazolam, verapamil and cyclo-
sporin.[28] P-glycoprotein possibly has a role in
modulating expression of CYP3A. It has been
found that the extent to which rifampicin could in-
duce CYP3A was so affected.[29] This is likely to
complicate the prediction of interactions among
drugs that are substrates for both P-glycoprotein
and the CYP3A systems. Rifampcin has also been
shown to increase the P-glycoprotein-mediated ex-
cretion of talinolol predominantly in the gut wall,
possibly through induction of the transport sys-
tem.[30] Concomitant rifampicin therapy may also
affect digoxin disposition in humans by induction
of P-glycoprotein. Experimental data have shown
significantly greater reduction of the area under the
curve (AUC) of oral digoxin compared with that
of intravenous digoxin, together with increased in-
testinal P-glycoprotein content by 2- to 3-fold, on
coadministration of rifampicin and the cardiac gly-
coside.[31]

2. Interactions Among 
Antituberculous Drugs

Drug interactions during antituberculous che-
motherapy theoretically should be categorised into
those occurring among antituberculous drugs and
those between antituberculous drugs and other drugs/
dietary constituents. The former are generally of little

Table I. Cont’d

Enzyme Substrate Inducer Inhibitor

Dapsone Fluoxetine

Diltiazem Indinavir

Erythromycin Itraconazole

Felodipine Ketoconazole

Lidocaine (lignocaine) Ritonavir

Midazolam Sertraline

Nifedipine

Quinidine

Tacrolimus

Tamoxifen

Terfenadine

Testosterone

Triazolam

Valproic acid (sodium valproate)

Verapamil
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clinical importance. Thus, they will only be briefly
discussed.

The disturbance in pharmacokinetics on coadmin-
istration of rifampicin and isoniazid is far from be-
ing consistent[32] and is clearly of no significance.
Although para-aminosalicylic acid was found to
delay the time to reach peak concentration follow-
ing drug administration (Tmax), and reduce the peak
plasma concentration after single-dose administra-
tion (Cmax) and AUC of rifampicin,[33] this is likely
to be of little significance because the two agents
are hardly ever used together. During the concom-
itant administration of pyrazinamide and rifampi-
cin, the AUC of rifampicin was decreased while its
clearance was increased.[34] One report also indi-
cated that pyrazinamide and ethionamide could in-
crease serum concentration of isoniazid.[35] The
significance of these two aforementioned reports
remain unclear, particularly in light of the strong
experience of successful application of standard
short-course antituberculous chemotherapy regi-
mens embracing the use of isoniazid, rifampicin,
pyrazinamide and ethambutol.[4]

Although the WHO encourages the use of fixed
dose combinations of rifampicin, isoniazid toget-
her with pyrazinamide (or pyrazinamide plus
ethambutol) for the treatment of tuberculosis,[4]

primarily to enhance adherence and reduce drug
resistance, there is still a concern for reduced rif-
ampicin absorption from these combination formu-
lations when manufactured under suboptimal con-
ditions.[36] In fact, the WHO only advises the use
of formulations with demonstrated rifampicin bio-
availability.[37] To assist with this process, the
WHO is engaged in establishing a quality assur-
ance laboratory network to provide national tuber-
culosis programmes with a mechanism for ensur-
ing procurement of high-quality combination
medications.[38] Thus, this potential pharmaceuti-
cal interaction among antituberculous drugs merits
some attention because of its possible adverse im-
pact on treatment outcomes.[39]

Rifampicin and isoniazid when coadministered
might lead to synergistic hepatotoxicity.[40] In a
meta-analysis,[40] the mean incidences of drug-

related toxic hepatitis were found to be 1.6% (iso-
niazid), 1.1% (rifampicin) and 2.6% (isoniazid +
rifampicin). The underlying mechanism is not to-
tally clear but might apparently be related to the
induction of the hydrolase pathway and accumul-
ation of hydrazine and possibly its acetylated de-
rivatives, particularly in those with the slow ace-
tylator phenotype.[41] The presence of underlying
liver disease and old age will further increase the
risk of hepatotoxicity.[42]

3. Clinically Significant Interactions
Between Antituberculous Drugs and
Other Drugs/Dietary Constituents

These interactions are often of great clinical rel-
evance. Only those pertinent to isoniazid, rifampi-
cin and the fluoroquinolones will be discussed in
detail since these constitute the majority of the clin-
ically significant interactions. Clarithromycin has
not been shown to have convincing clinical activity
against Mycobacterium tuberculosis. Suffice to
note that it can act as an enzyme inhibitor leading
to dose-related rifabutin toxicity when coadmin-
istered with this rifamycin in the management of
disseminated Mycobacterium avium-intracellulare
disease.[43,44] Rifabutin is a less potent hepatic en-
zyme inducer compared with rifampicin, and thus
is less likely to be involved in drug interactions.[45]

3.1 Interactions of Isoniazid

Many of the clinically significant interactions
between isoniazid and other agents (pharmaceuti-
cal or dietary) are pharmacokinetic in nature, in-
volving inhibition of enzyme systems by the former,
especially the CYP450 superfamily.[46]

3.1.1 Phenytoin
Murray[47] first reported clinical phenytoin tox-

icity in patients who received isoniazid concomi-
tantly, and the neurological dysfunction disap-
peared on isoniazid cessation. Subsequently Kutt
et al.[48-50] confirmed this interactive toxicity and
suggested that the likely responsible mechanism
was that of inhibition of phenytoin metabolism by
isoniazid, particularly in patients who are slow ac-
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etylators. Miller et al.[51] also reported similar find-
ings. The neurological toxicity could be severe
enough to result in fatality.[52] In patients who are
rapid acetylators, it seemed that phenytoin toxicity
occurred more readily in the presence of isoniazid-
induced hepatic dysfunction.[53] As rifampicin is a
potent inducer of the CYP450 enzymes, this effect
was found to probably outweigh the inhibitory ef-
fect of isoniazid on the metabolism of phenytoin
when both antituberculous drugs were given to-
gether.[54]

3.1.2 Carbamazepine
Valsalan and Cooper.[55] reported features of car-

bamazepine toxicity in patients who received iso-
niazid concomitantly. When the dose of carbamaz-
epine was reduced, the signs of toxicity subsided.
Subsequently, other authors also reported elevated
serum cabamazepine levels in patients receiving
isoniazid treatment.[56,57] The additional potential-
ity of drug-drug interaction leading to liver toxicity
due to isoniazid also deserves attention.[56,58] This
could be due to complex enzyme inhibition and
induction involving both the CYP450 family and
other systems.[56]

3.1.3 Valproic Acid (Sodium Valproate)
To date, there have been limited reports on an

interaction between isoniazid and valproic acid
(sodium valproate); in one reported case the inter-
action lead to isoniazid hepatoxicity and in this
case and a second there was valproic acid toxic-
ity.[59,60] The likely responsible mechanisms might
be similar to those in operation for carbamaze-
pine.[59]

3.1.4 Levodopa
Concomitant isoniazid and levodopa therapy

has been reported to result in flushing, palpitation
and elevation of blood pressure.[61] Isoniazid can
act as a monoamine oxidase inhibitor, thus causing
excess catecholamine stimulation when coadmin-
istered with the dopamine precursor levodopa. Fur-
thermore, inhibition of both peripheral and central
dopa decarboxylase aggravate the adverse effects.

3.1.5 Theophylline
Reports of reduced clearance of theophylline in

patients coadministered isoniazid have been repor-
ted in the literature,[62,63] affecting the slow acetyl-
ators more.[63] Clinical theophylline toxicity has
also been reported.[64] The interaction of isoniazid
with theophylline is more likely to be clinically
relevant when a higher dosage of isoniazid is ad-
ministered i.e. ≥10 mg/kg/day. When rifampicin is
administered together with isoniazid, the serum
theophylline concentration is most likely to de-
crease,[46] though reports of reduced clearance[65,66]

and even consequential toxicity[65] are also avail-
able.

3.1.6 Paracetamol (Acetaminophen)
Increased susceptibility to paracetamol (acet-

aminophen) toxicity in patients receiving isoniazid
has been well reported.[67-69] It has been hypo-
thesised that isoniazid induces the CYP450 sys-
tem, resulting in increased metabolism of paracet-
amol, formation of toxic metabolites, depletion of
glutathione stores and subsequent hepatocellular
injury.[70] Biphasic effect of inhibition-induction
on one CYP450 isoform enzyme, CYP2E1, may
also explain the increased risk of hepatotoxicity.[67]

Patients with slow acetylator phenotype when
given isoniazid 300mg daily for 7 days along with
paracetamol 500mg at different times during this
period actually were found to excrete lower amounts
of oxidative metabolites.[46] However, 24 hours af-
ter the last dose of isoniazid, when another dose of
paracetamol was administered, a marked increase
(about 50%) in oxidative metabolites over baseline
was observed, followed by a return to normal val-
ues when the next dose of paracetamol was given
48 hours later.[71] A significant increase of oxida-
tive metabolites was also found when rapid acetyl-
ators were given paracetamol only 12 hours after
their daily isoniazid dose.[72]

3.1.7 Warfarin
Rosenthal et al.[73] first reported a clinical case

of warfarin toxicity when isoniazid was acciden-
tally administered at a dosage of 600mg once daily
instead of the usual 300mg once daily. A consistent
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report on an animal model was in fact made some-
what earlier.[74]

3.1.8 Benzodiazepines
Isoniazid was found to impair the hepatic de-

methylation of diazepam.[75] However, when rif-
ampicin and ethambutol were also administered,
the overall result was enhanced clearance of diaz-
epam due possibly to the overriding induction of
hepatic microsomal enzyme mediated oxidation.[75]

In another study, isoniazid was found to decrease
the clearance of triazolam but not oxazepam.[76]

Other benzodiazepines like chlordiazepoxide and
clonazepam that are hepatically metabolised may
also have reduced clearance by isoniazid treatment
although studies are needed to confirm the impres-
sion.[46]

3.1.9 Antacids
Some studies have shown that antacids, but not

histamine H2 receptor antagonists can impair the
absorption of isoniazid.[77,78] However, others[79,80]

have shown little effect. A higher dose of alumin-
ium hydroxide used in the early study might ac-
count for the discrepancy.[77]

3.1.10 Other Drugs
Prednisolone was found to reduce serum con-

centrations of isoniazid in both slow and rapid ac-
etylators, but the underlying mechanism is un-
clear.[81] Pretreatment with isoniazid has been
reported in some cases to increase the hepatic me-
tabolism of enflurane, a volatile anaesthetic, there-
by increasing the concentration of fluoride ions and
the resulting risk of nephrotoxicity.[82] The effect
of long-term antituberculous treatment on vitamin
D metabolism was not found to be significant, al-
beit the study was confounded by failure to control
for dietary calcium and vitamin D intake.[83] Thus,
the short-term effect of isoniazid on lowering se-
rum concentrations of 25-hydoxy vitamin D and 1,
25-dihydroxy vitamin D reported earlier[84] carries
unclear significance. As isoniazid is a weak mono-
amine oxidase inhibitor, there is a potential for
interacting with antidepressant medications. The
pertinent clinical data, however, have been con-
flicting.[85,86] Isoniazid when used at high dose, has

also been found to interact with hydralazine and
other vasodilators, irrespective of their mechanisms
of action. The interaction often resulting in hypo-
tension could be due to the influence of the drug on
γ-aminobutyric acid (GABA) levels at cardiovas-
cular regulatory sites.[87]

3.1.11 Food
Basically all food can impair absorption of iso-

niazid, particularly those with high fat or carbohy-
drate content.[80,88] Case reports on ‘cheese’ and
‘wine’ reaction in patients who received isoniazid
might presumably be due to accumulation of mono-
amines (tyramine) as isoniazid can be a monoamine
oxidase inhibitor.[89-91] Because isoniazid is also an
inhibitor of histaminase[90,91] reports of adverse re-
actions representing histamine overdose, resulting
from ingesting fish with high histamine content
and isoniazid have been reported.[91,92]

3.2 Interactions of Rifampicin (Rifampin)

Food affects the oral absorption of rifampicin,
but probably not antacids.[93]

Most interactions involving rifampicin are phar-
macokinetic in nature. Rifampicin is a potent in-
ducer of many CYP450 isoenzymes, particularly
CYP2C and CYP3A as previously discussed.[18-24]

Drugs metabolised by these isoenzymes will be
clearly affected with therapeutic effects attenuated
or opposed.[5,18-24] Other drugs with routes of me-
tabolism less clearly understood can also be meta-
bolised more rapidly in patients receiving rifampi-
cin, and their pharmacological effects can thus be
altered. Some, like morphine may involve phase II
biotransformation pathways such as glucuronida-
tion,[94] and others, like digoxin may even involve
the P-glycoprotein elimination mechanism.[31] Ta-
ble II depicts some examples of such potentially or
overtly significant clinical interactions of varying
severity.[31,54,75,93-202]

Aside from the interactions discussed which are
largely due to induction of liver microsomal en-
zymes and intestinal enzymes by rifampicin,[203] a
number of intriguing interactions involving rifam-
ipicin and other drugs are also worthwhile men-
tioning. The underlying mechanisms for some of
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Table II. Examples of clinically significant interactions of rifampicin (rifampin) mostly related to its enzyme induction action. For all induction
interactions, special attention is needed when initiating and discontinuing rifampicin therapy.

Drug Clinical
significance

Comments/Recommendations References

Antacids ∗ Advise to take rifampicin 1 hour before or 2 hours after meal; antacids
have uncertain, but probably little interference with its absorption

93, 95

Anticoagulants, oral
Warfarin ∗∗∗ Increase warfarin dose according to results of international normalised

ratio and prothrombin time
96-98

Anticonvulsants
Hexobarbital ∗∗ Monitor clinical state and plasma hexobarbital level (with prudence in

interpreting plasma concentration of racemic drug); increase in dose may
be required

99, 100

Phenytoin ∗∗ The increase in phenytoin clearance is more marked when rifampicin is
used alone than when its is used together with isoniazid and ethambutol;
monitoring serum phenytoin concentration is required

54

Valproic acid (sodium
valproate)

∗ Studies required to evaluate clinical impact of lowered serum valproic acid
concentration; monitoring of clinical state and serum concentration of
valproic acid needed; effect of coadministration of isoniazid is not known

101

Anti-infectives (excluding anti-retroviral agents)
Atovaquone ∗ More investigation required, avoid coadministration of drugs; if absolutely

necessary, then monitor for loss of atovaquone efficacy
102

Clarithromycin ∗ Further studies required to evaluate clinical impact of reduced serum
concentration of clarithromycin

103

Chloramphenicol ∗∗ Avoid coadministration of drugs; if not, monitor chloramphenicol serum
concentration

104, 105

Dapsone ∗∗ Further studies required to evaluate clinical impact especially in patients
with Pneumocystis carinii pneumonia

106-108

Doxycycline ∗∗ Avoid coadministration of drugs; monitor patient’s clinical response to
doxycycline therapy if absolutely indicated

109

Fluconazole ∗∗∗ Monitor clinical response and serum fluconazole concentration; may need
to escalate fluconazole dosage; less reduction in serum concentration
compared with itraconazole

110-112

Itraconazole ∗∗∗ Same as for fluconazole; avoid use together with rifampicin if possible 111, 113, 114

Ketoconazole ∗∗∗ Same as for fluconazole; space ketoconazole and rifampicin by 12 hours
or avoid use of the two drugs concomitantly if possible

115-117

Cardiovascular therapeutic agents
Amiodarone ∗∗∗ Monitor clinical state and serum amiodarone concentration if

coadministration unavoidable
118

Bisoprolol ∗ Monitor clinical response to bisoprolol 119

Bunazosin ∗∗ Monitor clinical response and serum bunazosin concentration; adjust dose
for antihypertensive effect as needed

120

Carvedilol ∗∗∗ Monitor clinical response and increase dose if needed 121

Clofibrate ∗∗ Monitor for clinical efficacy and serum lipid level and increase dose if
needed

122

Digitoxin ∗∗∗ Monitor serum digitoxin concentration plus heart failure and arrythmia
control; increase dose if needed

123-125

Digoxin ∗∗ Monitor serum digoxin concentration and clinical control of heart
failure/arrhythmia; interaction complicated by renal failure

31, 126-128

Diltiazem ∗∗∗ Monitor for attenuation of effective control of hypertension or angina 129-131

Disopyramide ∗∗ Monitor clinical response 132, 133

Enalapril ∗∗ More studies required; careful monitoring of clinical response especially
blood pressure on coadministration

134
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Table II. Cont’d

Drug Clinical
significance

Comments/Recommendations References

Fluvastatin ∗ Monitor clinical efficacy and serum cholesterol level; adjustment of dose
may be required

135

Lorcainide ∗∗ Monitor for decreased lorcainide effectiveness 136

Losartan ∗∗ Monitor for reduced clinical efficacy of losartan. Further study on clinical
relevance required

137

Metoprolol ∗∗ Monitor for reduced efficacy of blood pressure control and also angina;
may need dosage increase

138

Mexiletine ∗∗∗ Monitor for arrhythmia control if combination is unavoidable 139, 140

Nifedipine ∗∗∗ Use alternative agent or class of drug if possible; monitor clinical response,
may need increase of dose

141, 142

Propafenone ∗∗∗ Monitor plasma propafenone concentration and arrhythmia control;
increase dose if necessary

143-145

Propanolol ∗∗∗ Monitor blood pressure control, may need increased dose 146

Quinidine ∗∗∗ If combination unavoidable, monitor arrhythmia control and serum
concentration; increase dose if needed

128, 147, 148

Tertatolol ∗∗ Monitor for possible attenuation of clinical efficacy 149

Tocainide ∗∗ Monitor arrthymia control; may need increase in dose 150

Verapamil ∗∗∗ Use alternative agent or class of drug if possible; monitor serum
concentration and clinical response to guide required increase in drug dose

151-155

Contraceptives, oral ∗∗∗ Change to other forms of contraception together with counselling (because
unplanned pregnancy well documented with coadministration of oral
contraceptives and rifampicin)

156-158

Glucocorticoids

Cortisone ∗∗∗ Increase in dose, roughly twice according to clinical and biochemical
response parameters

159, 160

Dexamethasone ∗∗∗ Same as above 161

Methylprednisolone ∗∗∗ Same as above 162

Prednisone, prednisolone ∗∗∗ Same as above 163, 164

Immunosuppressants
Cyclosporin ∗∗∗ Effect on oral preparation greater than intravenous preparation;

rifampicin-containing antituberculous regimen when used concomitantly
necessitates increase in dose ± thrice instead twice daily administration;
guidance by therapeutic drug monitoring mandatory to avoid toxicity. Loss
of graft due to interaction possible

165-171

Sirolimus ∗∗ Most likely similar to cyclosporin; more clinical data required 172

Tacrolimus ∗∗∗ Similar to cyclosporin; more clinical data desirable 173-175

Leflunomide ∗∗ Monitor for hepatotoxicity due to metabolites; more clinical data required 176

Levothyroxine ∗∗∗ Monitor clinically and biochemically for hypothyroidism for patients on
L-thyroxine replacement

177, 178

Montelukast ∗ More clinical data required to assess possibility of worsening of asthma
control

179

Opioids
Methadone ∗∗∗ Increase dose to prevent opioid withdrawal as indicated 180, 181

Morphine ∗∗ Monitor for pain control and increase dose as needed; more clinical data
required

94

Psychotropic Agents
Benzodiazepines

 diazepam ∗∗ Monitor clinical effect and increase dose as needed; possible
circumvention by substitution with lorazepam or oxazepam

75, 182, 183

 midazolam ∗∗ Same as above 184
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these interactions have not been totally unravelled.
Serum concentrations of rifampicin were undetect-
able when the drug was given simultaneously with
both isoniazid and ketoconazole, and decreased by
about half when just ketoconazole was given con-
currently with rifampicin.[115] However, serum
concentrations similar to those attained with rifam-
picin alone were achieved when rifampicin was ad-
ministered 12 hours after ketoconazole.[115] An in-
teraction at the level of absorption of rifampicin
might be in operation. Rifampicin was speculated
to exert an alternative role, aside from enzyme in-
duction to potentiate the anticoagulant effect of
warfarin.[204] This might be due to a change in war-
farin binding, a differential effect on warfarin ste-
reoisomer metabolism or through another obscure
pharmacodynamic effect.[204] However, the con-
founding influence of isoniazid-related interaction
could not be totally excluded. Coadministration of
cotrimoxazole (trimethoprim-sulfamethoxazole)
with rifampicin could escalate the serum levels and
half-life of the latter[205] and this may lead to hep-
atotoxicity. Levamisole when given simultaneous-
ly with rifampicin was found to cause an approxi-

mately 3-fold rise in the free fraction of rifampicin
and led to increase in its clearance with decrease in
serum rifampicin concentration.[206] A displace-
ment of drug at the binding sites of protein might
have occurred.

3.3 Interactions of Fluoroquinolones

The discussion on interactions between
fluoroquinolones and other drugs/dietary compo-
nents will be restricted largely to those pertinent to
ciprofloxacin, ofloxacin and levofloxacin. This is
because these are currently the three fluoroquin-
olones that are recommended for long-term use in
tuberculosis treatment based on their satisfactory
safety profile.[207] The interactions include those
which result in altered absorption, metabolism and
renal excretion of the fluoroquinolones or the other
agents, and those which result in potential CNS
toxicity. It is important to note that extrapolation
of the drug interactions observed with one fluoro-
quinolone to another can be inappropriate. Indeed,
ciprofloxacin has been found to be a stronger in-
hibitor of CYP1A2 activity than ofloxacin.[208,209]

Table II. Cont’d

Drug Clinical
significance

Comments/Recommendations References

 nitrazepam ∗∗ Same as above 185

 triazolam ∗∗ Same as above 186

Haloperidol ∗∗∗ Monitor control of psychosis; escalate dose if needed 187, 188

Nortriptyline ∗∗∗ Monitor for loss of antidepressant effect and escalate dose as needed;
therapeutic monitoring of serum antidepressant concentration possible

189, 190

Sertraline ∗∗ Same as for nortriptyline 191

Zopiclone ∗∗ Monitor clinical hypnotic effect; may need dosage increase 192

Zolpidem ∗∗ Monitor as for zopiclone 193

Rofecoxib ∗ Monitor clinical anti-arthritis efficacy; more clinical data required 194

Sulphasalazine ∗ Monitor clinical effects; more data required 195

Sulphonylureas
Chlorpropamide ∗∗∗ Monitor blood glucose control and adjust dosage accordingly 196

Glibenclamide (glyburide) ∗∗∗ Same as above 197-199

Tolbutamide ∗∗∗ Same as above 123

Theophylline ∗∗∗ Monitor clinical effect and rarely toxicity (due to isoniazid coadministration
and other confounding variables); monitor serum theophylline
concentration; increase of dose and rarely decrease of dose may be
required

46, 65, 66,
200-202

∗ = possible; ∗∗ = likely; ∗∗∗ = definite.
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3.3.1 Pharmacokinetic Interactions

Absorption
Food usually has little or no impact on the prin-

cipal pharmacokinetic parameters of ciprofloxacin,
ofloxacin and levofloxacin.[210-212] Aluminium-,
magnesium- and calcium-containing antacids are
well known for their potential to reduce the absorp-
tion of oral fluoroquinolones (by ≤85% decrease in
AUC or Cmax), though to different degrees depend-
ing chiefly on the metal cation, aluminium and mag-
nesium being more potent.[213-215] The proposed
mechanism of this interaction lies in the chelation
between the cation and 4-keto oxygen, 3-carboxyl
group of the fluoroquinolone.[213] Ranitidine, a H2

antagonist, has no effect on the absorption of con-
currently administered ciprofloxacin,[213] ofloxa-
cin[216] or levofloxacin.[215] Sucralfate (an alumin-
ium salt of a sulphated disaccharide) is known to
markedly diminish the absorption of most fluoro-
quinolones (≤90% decrease) if no adequate spacing
of doses is carried out.[212,217,218] This can be pre-
vented by giving the fluoroquinolone 2 to 3 hours
before the administration of sucralfate.[212] The
iron supplement ferrous sulphate can impair the ab-
sorption of fluoroquinolones.[215,219] The decrease
in AUC and Cmax can be ≤90%. Studies have shown
ciprofloxacin can have reduced oral bioavailability
when coadministered with didanosine.[220,221] It is
likely that other fluoroquinolones will behave sim-
ilarly. Many multivitamin preparations contain
minerals such as zinc, magnesium and copper.
They can also impair the absorption of fluoroqui-
nolones when these antimicrobials are coadmin-
istered.[219] The preparations probably act through a
similar chelation mechanism as for the antacids.
The oral bioavailabilities of ofloxacin and cipro-
floxacin were significantly reduced when given
with nutritional supplements in one study,[222] but
another study by Yuk et al.[223] demonstrated no such
effect.

Metabolism
Ciprofloxacin, by inhibiting CYP450 enzymes,

appeared to have significant negative impact on
caffeine and theophylline clearance,[224-226] possi-
bly leading to undesirable gastrointestinal and

neurological toxicity.[227,228] On the other hand,
ofloxacin and levofloxacin have not been shown to
significantly interfere with the clearance of theo-
phylline or caffeine.[224,227,229,230] Minor alteration
in theophylline clearance did not produce clinical
effects.[231]

Although there have been a number of clinical
reports on potentiation of the hypoprothrombinae-
mic effect of warfarin by ciprofloxacin and oflox-
acin,[232-234] the evidence of a pharmacokinetic in-
teraction due to liver microsome enzyme inhibition
by a fluoroquinolone leading to accumulation of
the anticoagulant has been controversial.[235-237]

However, results of studies performed in healthy
volunteers might not be fully extrapolatable to the
elderly or malnourished patients.[233] Sometimes
only the pharmacologically less active R-isomer
was in fact found to accumulate.[235] Thus, the mec-
hanism of interaction may be beyond a pharmaco-
kinetic issue.

Elevation of serum concentrations of cyclospo-
rin have been reported with the concomitant use of
cyclosporin with certain fluoroquinolones like nor-
floxacin,[238,239] and ciprofloxacin.[240] Nephrotox-
icity was reported to occur when fluoroquinolones
and cyclosporin were coadministered.[238,240,241]

Conversely, there have been reports of lack of dis-
turbance of cyclosporin pharmacokinetics when ei-
ther ciprofloxacin or levofloxacin was coadmin-
istered.[242-246] Thus, the clinical significance of the
interaction between some fluoroquinolones and
cyclosporin appears not yet fully known, nor is its
mechanism if it is indeed present.

More reports and studies of lowered serum pheny-
toin concentrations, on coadministration of the an-
ticonvulsant and ciprofloxacin, are available rather
than of the contrary occurrence.[247-252] This can be
of clinical significance as the propensity to seizure
is much increased as a result of this putative inter-
action between the two drugs.[248,252] The underly-
ing mechanisms have not been fully elucidated.
Possible ones such as ciprofloxacin-mediated induc-
tion of liver enzymes or suppression of gut flora–
related deconjugation have been suggested.[250,252]
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Renal Excretion
Cimetidine and probenecid have been shown to

reduce the renal clearance of ofloxacin and levo-
floxacin.[253-255] Probenecid was also reported to
reduce the renal clearance of ciprofloxacin, though
there was no significant changes in the total clear-
ance of the drug presumably due to activation of
nonrenal elimination pathways.[256]

3.3.2 Pharmacodynamic Interactions

Nonsteroidal Anti-Inflammatory Drugs
The likely attributable mechanism for CNS pro-

excitation is a concentration-dependent competi-
tive inhibition of GABA binding at post-synaptic
receptor sites.[257] Certain nonsteroidal anti-in-
flammatory drugs (NSAIDs) and their metabolites
can enhance the inhibition of GABA receptor bind-
ing by fluoroquinolones.[258,259] While in labora-
tory studies, the combination of NSAIDs and cipro-
floxacin could produce convulsions in mice,[260,261]

this effect has not been significantly observed with
ofloxacin and levofloxacin.[261,262]

Others
When ciprofloxacin was combined with theo-

phylline, GABA binding to receptors could be de-
creased in a dose-related fashion leading to neuro-
toxicity, even in the absence of a significant increase
in serum concentrations of theophylline.[263] The
previously discussed nephrotoxicity that might re-
sult from interaction of cyclosporin with cipro-
floxacin,[240,241] could also be pharmacodynamic
in nature as the levels of cyclosporin were only
found to be therapeutic. As ofloxacin has not been
shown to be a significant inhibitor of CYP450 en-
zymes, the interaction of ofloxacin and warfarin
could again result from a pharmacodynamic, rather
than pharmacokinetic interaction.[232] The postu-
lated mechanisms have included suppression of vi-
tamin-K producing gut bacteria and displacement
of warfarin from albumin binding sites. However,
there is yet no consensus on these hypothesised
mechanisms.[264,265] When ofloxacin and cycloser-
ine were coadministered, adverse neurological re-
actions could occur.[266,267] At the moment, there
are no convincing data on an unequivocal pharma-

cokinetic interaction between these two antimyco-
bacterial agents.[268] One possible mechanism is a
pharmacodynamic interaction. Finally, Lucet et
al.[269] reported two cases of increased neurotoxic-
ity when metronidazole was coadministered with
pefloxacin. Unfortunately, serum drug concentra-
tions were not clearly reported. The interaction was
suspected to be pharmacodynamic in nature. No
similar data exist for other fluoroquinolones.

3.4 Interactions of Other 
Antitubreculous Drugs

Streptomycin has ototoxic and nephrotoxic po-
tential and, when practical, should not be given
with drugs with similar toxicity profiles. These in-
clude other aminoglycosides, some cephalosporins,
vancomycin, amphotericin B, cyclosporin and cis-
platin.[5] Streptomycin may also potentiate the ef-
fect of neuromuscular blocking agents used during
the administration of an anaesthetic.[5]

Pyrazinamide was reported to have drug inter-
action with allopurinol.[270] The latter induced mark-
ed changes in levels of pyrazinamide metabolites
and accumulation of pyrazinoic acid. These could
cause inhibition of renal urate secretion and might
negate the favourable effect of allopurinol as a
hypouricaemic agent. Pyrazinamide was also sus-
pected to contribute to lowering of serum level of
cyclosporin when used with isoniazid and rifampi-
cin.[271]

Ethambutol was reported to increase the un-
bound fraction of diazepam when patients received
coadministration of these two drugs, but the change
in clearance was not significant.[75] Ethambutol
Cmax was reduced by about 30% by aluminium-
magnesium antacid,[272,273] thus avoidance of ant-
acids has been recommended near timing of eth-
ambutol administration.[273]

4. Drug Interactions in the Treatment of
HIV-Related Tuberculosis

4.1 Drug-Disease Interactions

Among others, the most important aspect of
drug-disease interactions is malabsorption of anti-
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mycobacterial agents[274,275] due to HIV enteropa-
thy and other HIV-associated opportunistic infec-
tions of the gut. Rifampicin, ethambutol and to a
lesser extent pyrazinamide appeared more readily
affected, unlike isoniazid.[274,275] Malabsorption
could become increasingly common and severe
with progression in the immunodeficiency.[274,275]

Rifabutin, a drug with equivalent antituberculous
activity in patients with HIV,[276] appeared to be less
frequently malabsorbed in this patient population
compared with rifampicin.[277] Better bioavailabil-
ity of rifapentine was also documented in another
study.[278] The absorption of fluoroquinolones ap-
peared to be reasonably preserved.[279]

4.2 Drug-Drug Interactions

As the therapy for HIV and its associated infec-
tions is becoming increasingly complex, the poten-
tial for drug interactions can be extremely high. A
few important groups of possible drug interaction
during antituberculous chemotherapy are briefly
discussed below.

4.2.1 Interactions of Rifamycins with Nucleoside
Reverse Transcriptase Inhibitors
The nucleoside reverse transcriptase inhibitors

such as zidovudine and lamivudine are not meta-
bolised by the CYP450 enzymes. Furthermore, the
pharmacokinetic parameter most closely associ-
ated with the activity of these analogues is the in-
tracellular concentration of the active form, the tri-
phosphate derivative,[280] and a close relationship
between the serum concentration of the analogue
and its triphosphate metabolite is lacking.[281,282]

The plasma concentration of zidovudine, which is
metabolised mainly by glucuronidation,[283] is de-
creased it is when coadministered with rifampi-
cin.[284] Plasma concentration lowering, however,
has not been shown to reduce the concentration of
the intracellular metabolite;[282] thus the clinical ef-
ficacy of these antiretroviral agents can still be pre-
served.

4.2.2 Interactions of Rifamycins with HIV 
Protease Inhibitors
The currently available rifamycins are all induc-

ers of the CYP3A isoform enzymes, with rifampi-

cin having greater activity than rifabutin.[45] Thus,
rifampicin has been shown to decrease serum con-
centrations of protease inhibitors by 35 to 92%,
whereas rifabutin decreases them by only 15 to
45%.[6] Although the clinical relevance of these
findings have not been established as the interac-
tion studies were conducted in human volunteers,
the efficacy of these antiviral agents can be atten-
uated as their activity in the recommended dosage
ranges appears to depend heavily on their serum
concentrations.[6] Intermittent administration of ri-
fampicin does not seem to reduce the enzyme in-
ducing capacity could impair the therapeutic effi-
cacy of the protease inhibitors.

The clinical relevance of modest reduction in
serum concentrations of the protease inhibitors
when coadministered with rifabutin remains un-
clear. It has been suggested that increased dosage
of indinavir and nelfinavir might enable the main-
tenance of therapeutic efficacy.[6] Furthermore, as
the protease inhibitors are CYP450 enzyme inhib-
itors, the serum concentration of rifabutin would
be increased. This might result in toxicity such as
uveitis and leucopenia.[285] This phenomenon has
led to the initial recommendation that ritonavir,
which has the strongest enzyme inhibition, should
preferably not be used together with rifabutin.[6,286]

However, there have been more recent suggestions
that appropriate dosage reduction of rifabutin when
coadministered with indinavir, nelfinavir and per-
haps even ritonavir might circumvent this interac-
tion toxicity.[287-290] Furthermore, as a comparison,
for the patient who is treated with saquinavir soft
gelatin capsules, with relatively weak CYP450 in-
hibition, and two nucleoside reverse transcriptase
inhibitors, the usual dosage of rifabutin should
probably not be decreased.[290] In contrast, the pro-
tease inhibitors have little known effects on serum
rifampicin concentrations.[6] These phenomena can
be exploited advantageously in therapeutic terms for
enabling the use of ritonavir together with rifampi-
cin and saquinavir, and perhaps even other protease
inhibitors.[291] The strong inhibiting effect of rito-
navir on saquinavir metabolism might compensate
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for the enzyme inducing effect of rifampicin, thus
preserving their combined antiretroviral activity.

4.2.3 Interactions of Rifamycins with
Non-Nucleoside Reverse Transcriptase Inhibitors
The non-nucleoside reverse transcriptase in-

hibitors are metabolised hepatically, but there are
major differences in their actions on the CYP3A
enzymes and the degree to which they act as sub-
strates of these enzymes. As a result, their interac-
tions with rifamycins cannot be generalised as a
class.[6] Delavirdine acts much like protease inhib-
itors. Its coadministration with rifampicin can re-

sult in marked reduction in the serum concentra-
tion of the antiretroviral agent with little change in
the serum concentration of the antituberculous
drug.[292] Delavirdine concentrations were also re-
duced by 80% when given with rifabutin,[293] and
rifabutin concentrations were raised by 300%.[294]

Thus, the use of delavirdine with either rifamycin
is not recommended.[290] It appears that nevirapine
and efavirenz can be used with either rifabutin or
rifampicin.[290] Increase in dosage of rifabutin is
required when used together with efavirenz. Pre-
liminary data also have suggested that intermittent
rifampicin administration might incur less interac-
tion with nevirapine,[295] and this could have po-
tential therapeutic implications.

4.2.4 Interactions of Other Antituberculous Drugs
with Antiretroviral Agents
Isoniazid has been evaluated and was found to

have no interaction with indinavir.[6] However, an
increased incidence of peripheral neuropathy with
coadministration of stavudine and isoniazid has
been reported.[296] Ethionamide might be primarily
metabolised by CYP3A isozymes,[297] and hence
can interact potentially with protease inhibitors. A
major obstacle in prediction of drug interactions
among the other antituberculous drugs and the
antiretroviral agents, particularly regarding the
second-line drugs, is the lack of full knowledge of
their pharmacokinetics.

5. Management of Drug Interactions
During Antituberculous Chemotherapy

Figure 1 presents a proposed algorithm for the
management of drug interactions between antitu-
berculosis drugs. To begin with a readily available
and constantly updated literature database for con-
sultation is of paramount importance, since new
therapeutic agents are continually emerging and it
is virtually impossible to maintain an ever fully
comprehensive vocabulary by oneself. An example
of such a source of comprehensive reference is
the ‘P-450 and P-glycoprotein drug interactions
websites’ compiled by Dr J Oesterheld and Dr DN
Osser, MD (http://www.mhc.com/cytochromes/,
http://mhc.com/PGP/ and others). However, one

Alert of interaction
· Literature database
· Background knowledge to possibly predict
· Therapeutic drug monitoring

Confirmation of interaction
· Correlation with literature database
· Clinical situation compatibility
· Therapeutic drug monitoring

Assessment of clinical significance
· Clinical/pharmacodynamic consequences?
· Severity?
· Therapeutic failure/resistance?
· Toxicity to organs?

Evaluation and/or implementation of
therapeutic alternatives
· Monitor pharmacodynamic consequences
  ± drug concentrations
· Dosage, schedule manipulation
· Withdrawal of drug
· Substitution of drug
· 'Antidote' manoeuvre
· No active measure except diligent
  monitoring

Fig. 1. Proposed algorithm for the management of drug interac-
tions during antituberculous chemotherapy.
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should be familiar with the basic pharmacokinetic
and pharmacodynamic characteristics of the agents
in question to help in predicting the likelihood of
interactions. When in doubt, and if therapeutic
drug monitoring (TDM) is available, this should be
prudently utilised early on to help prevent toxicity
resulting from an interaction. If an interaction is
suspected to have already occurred, one should
check the clinical situation compatibility particu-
larly regarding the time course. In addition to data
retrieved from the literature, TDM can be used also
to confirm the presence of pharmacokinetic inter-
actions. The data in literature must also be appro-
priately interpreted, considering such factors as
disease population versus healthy volunteers, de-
sign and strength of the clinical report or study, and
the drug dosage used. But the greatest concern
would be the clinical or pharmacodynamic rele-
vance and consequence, especially the seriousness
of the interaction in terms of a change in efficacy
or the production of toxicity by one or both drugs.
Finally, one needs to evaluate and/or implement al-
ternative therapeutic strategy. Most of the time,
change in scheduling or frequency of administra-
tion of the drug(s) may be the only change required.
However, if this cannot be optimised to meet the
goals of treatment or satisfactory alternative drugs
are readily available, drug withdrawal and substi-
tution would be the solution. In fortunate settings,
despite definitely quantifiable interactions, the
clinical impact is mild. Then only vigilant monitor-
ing is required.

With advancement of knowledge, technology
and expertise, it is sincerely hoped that TDM can
emerge as a new paradigm of care for some patients
during antituberculous chemotherapy by optimis-
ing the management of a wide variety of pharma-
cokinetic drug interactions.
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